在△ABC中,三個(gè)內(nèi)角A,B,C對(duì)應(yīng)三邊長(zhǎng)分別為a,b,c.若C=3B,
c
b
的取值范圍
 
考點(diǎn):余弦定理
專題:解三角形
分析:原式利用正弦定理化簡(jiǎn),將3B變形為2B+B,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),約分后利用二倍角的余弦函數(shù)公式變形化為一個(gè)角的余弦函數(shù),求出B的范圍得到2B的范圍,利用余弦函數(shù)值域確定出范圍即可.
解答: 解:∵C=3B,
∴由正弦定理得:
c
b
=
sinC
sinB
=
sin3B
sinB
=
sinBcos2B+cosBsin2B
sinB
=cos2B+2cos2B=2cos2B+1,
∵B+C<180°,即4B<180°,
∴0<B<45°,即0<2B<90°,
∴0<cos2B<1,即1<2cos2B+1<3,
c
b
的取值范圍為(1,3).
故答案為:(1,3).
點(diǎn)評(píng):此題考查了正弦定理,余弦函數(shù)的性質(zhì),以及二倍角的正弦、余弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|2-3x|≤
1
2

(2)|x|+|x+1|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)橢圓C經(jīng)過點(diǎn)P(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,PD⊥底面ABCD,∠ADC=90°,BC=
1
2
AD=1,PD=CD=2,Q為AD的中點(diǎn).
(Ⅰ)若點(diǎn)M在棱PC上,設(shè)PM=tMC,是否存在實(shí)數(shù)t,使得PA∥平面BMQ,若存在,給出證明并求t的值,若不存在,請(qǐng)說明理由;
(Ⅱ)在(Ⅰ)的條件下,求三棱錐P-BMQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=1,b=
3
,A=30°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把下列參數(shù)方程化為普通方程,并說明它們各表示什么曲線:
(1)
x=4cosφ
y=-5sinφ
(φ為參數(shù));       
(2)
x=1-4t
y=2t
(t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)公差不為零的等差數(shù)列{an}的前n項(xiàng)和Sn,若a3+a6=5,則S8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(8)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2
5
=
1
3
+
1
15
,
2
7
=
1
4
+
1
28
2
9
=
1
5
+
1
45
,…觀察以上各等式有:
(1)
2
11
=
 
;
(2)n≥3,且n∈N*時(shí),
2
2n-1
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案