某果林培育基地從其培育的一批幼苗中隨機(jī)選取了100株,測量其高度(單位:厘米),并將這些數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從高度在[120,130),[130,140),[140,150]三組內(nèi)的幼苗中,用分層抽樣的方法選取30株送給友好單位,則從高度在[140,150]內(nèi)的幼苗中選取的株數(shù)應(yīng)為( 。
A、4B、5C、6D、8
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:根據(jù)頻率和為1,求出a的值,再計算高度在[120,130),[130,140),[140,150]三組內(nèi)的株數(shù)是多少,從而求出結(jié)果來.
解答: 解:根據(jù)頻率和為1,得,
(0.005+0.010+0.020+0.035+a)×10=1,
所以a=0.03;
因為高度在[120,130),[130,140),[140,150]三組內(nèi)的株數(shù)分別為:
0.03×10×100=30,0.02×10×100=20,0.01×10×100=10,
所以從高度在[140,150]內(nèi)的株數(shù)中應(yīng)選取:
10
30+20+10
×30=5株.
故選:B.
點評:本題考查了頻率分布直方圖的應(yīng)用問題,也考查了分層抽樣方法的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABED是矩形,四邊形ADGC是梯形,AD⊥平面DEFG,EF∥DG,∠EDG=120°.AB=AC=FE=1,DG=2.
(Ⅰ)求證:AE∥平面BFGC;
(Ⅱ)求證:FG⊥平面ADF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2ex-1-
1
3
x3-x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時,用數(shù)學(xué)歸納法證明:?n∈N*,ex-1
xn
n!
(其中n!=1×2×…×n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)當(dāng)m=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)F(x)=f(x)-x1nx在定義域內(nèi)是否存在零點?若存在,請指出有幾個零點;若不存在,請說明理由:
(3)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時,不等式f(g(x))<f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市要對兩千多名出租車司機(jī)的年齡進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名司機(jī),已知抽到的司機(jī)年齡都在[20,45)歲之間,根據(jù)調(diào)查結(jié)果得出司機(jī)的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機(jī)年齡的中位數(shù)大約是
 
歲.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1的漸近線方程為( 。
A、y=±
4
3
x
B、y=±
3
4
x
C、y=±
3
5
x
D、y=±
4
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某人按打中國聯(lián)通客服熱線10010,準(zhǔn)備借助人工臺咨詢本手機(jī)的收費情況,他參照以下流程,撥完10010后,需按的鍵應(yīng)該是( 。
A、1B、7C、8D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

擲兩顆骰子,出現(xiàn)點數(shù)之和不大于5的概率為
 

查看答案和解析>>

同步練習(xí)冊答案