A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{5}$ | D. | $\frac{\sqrt{5}}{3}$ |
分析 幾何法:
連結(jié)AC,BD,交于點O,取DD1中點E,連結(jié)OE,AE,則∠EOA是異面直線AC與BD1所成角(或所成角的補角),由此利用余弦定理能求出異面直線AC與BD1所成角的余弦值.
向量法:
以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出異面直線AC與BD1所成角的余弦值.
解答 解:(幾何法)
在長方體ABCD-A1B1C1D1中,
連結(jié)AC,BD,交于點O,取DD1中點E,連結(jié)OE,AE,
∵A1A=AB=2BC=2,ABCD是矩形,
∴O是BD中點,∴EO$\underset{∥}{=}$$\frac{1}{2}$BD1=$\frac{3}{2}$,
∴∠EOA是異面直線AC與BD1所成角(或所成角的補角),
又AO=$\frac{1}{2}AC$=$\frac{\sqrt{5}}{2}$,AE=$\sqrt{A{D}^{2}+D{E}^{2}}$=$\sqrt{2}$,
∴cos∠EOA=$\frac{E{O}^{2}+A{O}^{2}-A{E}^{2}}{2•EO•OA}$=$\frac{\frac{9}{4}+\frac{5}{4}-2}{2×\frac{3}{2}×\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{5}$.
∴異面直線AC與BD1所成角的余弦值是$\frac{\sqrt{5}}{5}$.
故選:A.
(向量法)
在長方體ABCD-A1B1C1D1中,
以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
A(1,0,0),C(0,2,0),B(1,2,0),D1(0,0,2),
$\overrightarrow{AC}$=(-1,2,0),$\overrightarrow{B{D}_{1}}$=(-1,-2,2),
設(shè)異面直線AC與BD1所成角為θ,
則cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{B{D}_{1}}|}{|\overrightarrow{AC}|•|\overrightarrow{B{D}_{1}}|}$=$\frac{3}{\sqrt{5}×3}$=$\frac{\sqrt{5}}{5}$.
∴異面直線AC與BD1所成角的余弦值是$\frac{\sqrt{5}}{5}$.
故選:A.
點評 本題考查兩條異面直線所成角的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x-1 | B. | $y={({\frac{1}{2}})^x}$ | C. | $y=\frac{1}{1-x}$ | D. | y=x2-4x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{4}})$ | C. | $({-\frac{3}{4},+∞})$ | D. | $({-\frac{3}{2},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | n2 | B. | n(n+1) | C. | $\frac{n(n+1)}{2}$ | D. | (n+1)(n+2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:填空題
來源: 題型:查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com