16.2016年10月中旬臺(tái)風(fēng)“莎莉嘉”登陸某海濱城市,某條長(zhǎng)度為10千米的供電線路遭到嚴(yán)重破壞,造成大面積停電,為了快速恢復(fù)通電,某電力公司組織人員進(jìn)行搶修,同時(shí)為了保證質(zhì)量,搶修速度不得超過(guò)c千米/小時(shí),已知每小時(shí)的搶修成本(以元為單位)由可變部分和固定部分組成:可變部分與搶修的速度v(單位:千米/小時(shí))的平方成正比,比例系數(shù)為400,固定部分為10000元.
(1)把搶修成本y(元)表示為速度v(千米/小時(shí))的函數(shù),并指出函數(shù)的定義域;
(2)為使搶修成本最小,電力公司應(yīng)該以多大的速度進(jìn)行搶修?

分析 (1)依題意每小時(shí)的搶修成本(以元為單位)由可變部分和固定部分組成:可變部分與搶修的速度v(單位:千米/小時(shí))的平方成正比,比例系數(shù)為400,固定部分為10000元,即可求出搶修成本;
(2)分類(lèi)討論,利用用基本不等式、函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:(1)由題意可得y=$400{v}^{2}×\frac{10}{v}$+10000×$\frac{10}{v}$=4000(v+$\frac{25}{v}$)(0<v≤c);
(2)c≥5時(shí),y=4000(v+$\frac{25}{v}$)≥4000×$2\sqrt{v×\frac{25}{v}}$=40000,當(dāng)且僅當(dāng)v=5時(shí),ymin=40000元;
0<c<5時(shí),y=4000(v+$\frac{25}{v}$)在(0,c]上單調(diào)遞減,v=c,ymin=4000(c+$\frac{25}{c}$)元.

點(diǎn)評(píng) 本小題主要考查建立函數(shù)關(guān)系、不等式性質(zhì)、最大值、最小值等基礎(chǔ)知識(shí),考查綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決實(shí)際問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.一片森林原有面積為a,現(xiàn)計(jì)劃每年采伐一些樹(shù)木,且每年采伐的森林面積占上一年底森林面積的百分比為q,即第x(x∈N)年底的剩余森林面積為y=a(1-q)x,x與y的部分對(duì)應(yīng)值如表:
 x 0 1 2
 y a $\frac{20}{3}$ $\frac{40}{9}$
(1)求原有森林面積a和每年采伐森林面積的百分比q;
(2)問(wèn)經(jīng)過(guò)多少年后,剩余的森林面積開(kāi)始小于原來(lái)的$\frac{1}{10}$.
(注:lg2≈0.301,lg3≈0.477)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在長(zhǎng)方體ABCD-A1B1C1D1中,A1A=AB=2BC=2,則異面直線AC與BD1所成角的余弦值是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A={x|x≤5,x∈N},B={x|1<x<9,x∈N},則A∩B的非空子集共有15個(gè),A∪B的真子集個(gè)數(shù)為511.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若a5=2a3+a4,且S5=62.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.命題p:?x0≥2,x02-2x0-2>0的否定是( 。
A.?x0≥2,x02-2x0-2<0B.?x0<2,x02-2x0-2<0
C.?x<2,x2-2x-2≤0D.?x≥2,x2-2x-2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校高三共有2000名學(xué)生參加廣安市聯(lián)考,現(xiàn)隨機(jī)抽取100名學(xué)生的成績(jī)單(單位:分),并列成如表所示的頻數(shù)分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)6182826175
(1)試估計(jì)該年級(jí)成績(jī)≥80分的學(xué)生人數(shù);
(2)已知樣本在成績(jī)?cè)赱40,50)中的6名學(xué)生中,有4名男生,2名女生,現(xiàn)從中選2人進(jìn)行調(diào)研,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(a)=$\frac{si{n}^{2}(π-α)•cos(2π-α)•tan(-π+α)}{sin(-π+α)•tan(-α+3π)}$.
(1)化簡(jiǎn)f(α);
(2)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(3)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以原點(diǎn)為圓心,橢圓C的短軸長(zhǎng)為直徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱(chēng)的不同的兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案