5.在△ABC中,已知下列條件,求三角形的面積S(精確到0.01cm2):
(1)a=10$\sqrt{2}$cm,c=20cm,∠A=30°;
(2)b=12cm,∠A=30°,∠B=60°.

分析 (1)由已知及余弦定理可求b的值,利用三角形面積公式即可計(jì)算得解;
(2)利用特殊角的三角函數(shù)值可求a,進(jìn)而利用三角形面積公式即可計(jì)算求值得解.

解答 解:(1)∵a=10$\sqrt{2}$cm,c=20cm,∠A=30°,
∴由余弦定理a2=b2+c2-2bccosA,可得:200=b2+400-20$\sqrt{3}$b,解得:b=10$\sqrt{3}$±10,
∴S△ABC=$\frac{1}{2}$bcsinA=50$\sqrt{3}$±50≈36.60或136.60cm2
(2)∵b=12cm,∠A=30°,∠B=60°.
∴∠C=90°,由tan∠A=$\frac{a}$,可得:$\frac{\sqrt{3}}{3}$=$\frac{a}{12}$,解得:a=4$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}ab$=$\frac{1}{2}×12×4\sqrt{3}$=24$\sqrt{3}$≈41.57cm2

點(diǎn)評(píng) 本題考查了三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若集合A含有12個(gè)元素,集合B含有8個(gè)元素,集合A∩B含有5個(gè)元素,則集合A∪B含有的元素個(gè)數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知a=20.3,b=log${\;}_{\frac{1}{2}}$3,c=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,則(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某函數(shù)的圖象向右平移$\frac{π}{4}$個(gè)單位后,所得圖象的解析式y(tǒng)=sin(2x+$\frac{π}{4}$),則原來(lái)函數(shù)的解析式為( 。
A.y=sin(2x-$\frac{π}{4}$)B.y=sin(2x+$\frac{π}{2}$)C.y=sin(2x+$\frac{3π}{4}$)D.y=sin(2x+$\frac{π}{4}$)-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.球的半徑是R,距離球心4R處有一光源P,光源能照到的地方用平面去截取,則截得的最大面積是( 。
A.πR2B.$\frac{15}{16}$πR2C.$\frac{9}{16}$πR2D.$\frac{1}{2}$πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.平行四邊形ABCD,證明:|$\overrightarrow{AB}$|2+|$\overrightarrow{BC}$|2+|$\overrightarrow{CD}$|2+|$\overrightarrow{DA}$|2=|$\overrightarrow{AC}$|2+|$\overrightarrow{BD}$|2(提示:θ+φ=π,利用余弦定理)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=$\frac{2x+1}{2{x}^{2}+x+2}$,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.0.9,0.99,0.999…,$\underset{\underbrace{0.99…9…}}{n個(gè)9}$前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.空間四條直線兩兩相交,則可確定的不同平面數(shù)為( 。
A.1個(gè)B.4個(gè)C.6個(gè)D.1個(gè)或4個(gè)或6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案