【題目】現(xiàn)有六名百米運動員參加比賽,甲、乙、丙、丁四名同學(xué)猜測誰跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一個;丁猜是中之一,若四名同學(xué)中只有一名同學(xué)猜對,則猜對的是(

A.B.C.D.

【答案】C

【解析】

逐一分析四人的猜測,得出矛盾者,即為錯誤,反之則正確.

解:若甲的猜測是對的,即第一名在中產(chǎn)生,其他人猜測都是錯誤,則乙的猜測是錯誤的,即得到第一名是,矛盾,故甲的猜測是錯誤的;

若乙的猜測是正確的,則第一名在中產(chǎn)生,則丙的猜測是錯誤的,即得到第一名是中的一個;丁的猜測是錯誤的,即得到第一名不是中的一個,故第一名一定是,而甲的猜測也是錯誤的,即得到的第一名不可能是,故矛盾,故乙的猜測是錯誤的;

若丙的猜測是正確的,即第一名不是中任一個,是中的一個,因為甲的猜測是錯誤的,故第一名不是,則是中的一個,因為乙的猜測是錯誤的,即得到第一名是,故得到第一名一定是,這時也滿足丁的猜測是錯誤的,故正確答案是丙;

若丁的猜測是正確的,即第一名是中之一,則乙的猜測是錯誤的,即得到第一名是,矛盾.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列,對任意都有,(其中k、b、p是常數(shù)).

1)當(dāng),時,求;

2)當(dāng),時,若,,求數(shù)列的通項公式;

3)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是封閉數(shù)列.當(dāng),,時,設(shè)是數(shù)列的前n項和,,試問:是否存在這樣的封閉數(shù)列,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市扶貧工作組從43女共7名成員中選出隊長1人,副隊長1人,普通隊員2人組成4人工作小組下鄉(xiāng),要求工作組中至少有1名女同志,且隊長和副隊長不能都是女同志,共有______種安排方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,是由)個整數(shù),,按任意次序排列而成的數(shù)列,數(shù)列滿足),,,,按從大到小的順序排列而成的數(shù)列,記.

1)證明:當(dāng)為正偶數(shù)時,不存在滿足)的數(shù)列.

2)寫出),并用含的式子表示.

3)利用,證明:.(參考:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實數(shù)的取值范圍;

2)設(shè),在區(qū)間上的值域為,集合中元素的個數(shù)為,求證:;

3)設(shè)),,若對于,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,、分別是棱的中點,分別是線段上的點,則與平面平行的直線有(

A.0B.1C.2D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,底面是正三角形,

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,判斷的奇偶性,并說明理由;

2)當(dāng),時,若,求的值;

3)若,且對任意不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案