設(shè)當(dāng)|x-2|<a(a>0)成立時(shí),|x2-4|<1也成立,則a的取值范圍為            。

 解析:設(shè)A={x| |x-2|<a   (a>0) },   B={x| |x2-4|<1} 則A=(2-a, 2+a),  
  由題意得A B,注意到這里a>0,∴由A B得
     于是可得a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2
3
x3+
1
2
ax2+x
,a∈R.
(Ⅰ)當(dāng)x=2時(shí),f(x)取得極值,求a的值;
(Ⅱ)若f(x)在(0,+∞)內(nèi)為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2,其中a為實(shí)常數(shù).
(1)設(shè)當(dāng)x∈(0,1)時(shí),函數(shù)y=f(x)圖象上任一點(diǎn)P處的切線的斜線率為k,若k≥-1,求a的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=f(x)+a(x2-3x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c(x≤0)
2(x>0)
,其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)零點(diǎn),求實(shí)數(shù)a取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知函數(shù)f(x)滿足f(x)=f(π-x),且當(dāng)x∈(-
π
2
π
2
)
時(shí),f(x)=x+sinx.設(shè)a=f(1),b=f(2),c=f(3),則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案