【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)(i)若恒成立,求的取值范圍;
(i i)當(dāng)時,證明.
【答案】(1);(2)(i);(i i)證明見解析.
【解析】
(1)對函數(shù)求導(dǎo),求得,利用導(dǎo)數(shù)的幾何意義,即可求得切線方程;
(2)(i)將問題轉(zhuǎn)化為恒成立,對參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性,即可容易求參數(shù)的范圍;
(i i)當(dāng)時,;結(jié)合(i)中所求,可得,再利用不等式進(jìn)行適度放縮,結(jié)合裂項求和,即可容易證明.
(1)因為,
故可得,
,,
所以在點(diǎn)處的切線方程為:,
即.
(2)(i)因為恒成立,
恒成立,即恒成立.
令,則,
①當(dāng)時,,所以滿足;
②當(dāng)時,,在上單調(diào)遞減,
因為時,,所以不滿足;
③當(dāng)時,時,,單調(diào)遞增;
時,,單調(diào)遞減;
,解得.
所以的取值范圍為.
(i i)時,,所以.
由(i)知:,即,所以.
令,得,即,所以.
即證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是直角梯形,且是正三角形,是的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某中學(xué)為全面貫徹“五育并舉,立德樹人”的教育方針,促進(jìn)學(xué)生各科平衡發(fā)展,提升學(xué)生綜合素養(yǎng).該校教務(wù)處要求各班針對薄弱學(xué)科生成立特色學(xué)科“興趣學(xué)習(xí)小組”(每位學(xué)生只能參加一個小組),以便課間學(xué)生進(jìn)行相互幫扶.已知該校某班語文數(shù)學(xué)英語三個興趣小組學(xué)生人數(shù)分別為10人10人15人.經(jīng)過一段時間的學(xué)習(xí),上學(xué)期期中考試中,他們的成績有了明顯進(jìn)步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學(xué),英語三個興趣小組中抽取7人,對期中考試這三科成績及格情況進(jìn)行調(diào)查.
(1)應(yīng)從語文,數(shù)學(xué),英語三個興趣小組中分別抽取多少人?
(2)若抽取的7人中恰好有5人三科成績?nèi)考案,其?/span>2人三科成績不全及格.現(xiàn)從這7人中隨機(jī)抽取4人做進(jìn)一步的調(diào)查.
①記表示隨機(jī)抽取4人中,語文,數(shù)學(xué),英語三科成績?nèi)案竦娜藬?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
②設(shè)為事件“抽取的4人中,有人成績不全及格”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px的焦點(diǎn)為F,過點(diǎn)F且斜率為1的直線l截得圓:x2+y2=p2的弦長為2.
(1)求拋物線C的方程;
(2)若過點(diǎn)F作互相垂直的兩條直線l1、l2,l1與拋物線C交于A、B兩點(diǎn),l2與拋物線C交于D、E兩點(diǎn),M、N分別為弦AB、DE的中點(diǎn),求|MF||NF|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,an=bn+n,bn=﹣an+1.
(1)證明:數(shù)列{an+3bn}是等差數(shù)列.
(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即)時等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國陽歷,是一部深奧的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如2013年3為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,
天干 | 甲 | 乙 | 丙 | 丁 | 戊 | 己 | 庚 | 辛 | 壬 | 癸 | ||
4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | |||
地支 | 子 | 丑 | 寅 | 卯 | 辰 | 巳 | 午 | 未 | 申 | 酉 | 戌 | 亥 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問李東的父親是哪一年出生( )
A.甲子B.乙丑C.丁巳D.丙卯
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,D是△ABC中,邊BC的中點(diǎn),K為AC與△ABD的外接圓O的交點(diǎn),EK平行于AB且與圓O交于E,若AD=DE,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com