【題目】天津市某中學(xué)為全面貫徹五育并舉,立德樹人的教育方針,促進(jìn)學(xué)生各科平衡發(fā)展,提升學(xué)生綜合素養(yǎng).該校教務(wù)處要求各班針對薄弱學(xué)科生成立特色學(xué)科興趣學(xué)習(xí)小組”(每位學(xué)生只能參加一個(gè)小組),以便課間學(xué)生進(jìn)行相互幫扶.已知該校某班語文數(shù)學(xué)英語三個(gè)興趣小組學(xué)生人數(shù)分別為101015.經(jīng)過一段時(shí)間的學(xué)習(xí),上學(xué)期期中考試中,他們的成績有了明顯進(jìn)步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學(xué),英語三個(gè)興趣小組中抽取7人,對期中考試這三科成績及格情況進(jìn)行調(diào)查.

1)應(yīng)從語文,數(shù)學(xué),英語三個(gè)興趣小組中分別抽取多少人?

2)若抽取的7人中恰好有5人三科成績?nèi)考案,其?/span>2人三科成績不全及格.現(xiàn)從這7人中隨機(jī)抽取4人做進(jìn)一步的調(diào)查.

①記表示隨機(jī)抽取4人中,語文,數(shù)學(xué),英語三科成績?nèi)案竦娜藬?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

②設(shè)為事件抽取的4人中,有人成績不全及格,求事件發(fā)生的概率.

【答案】1)語文數(shù)學(xué)英語三個(gè)興趣小組中分別抽取.2)①分布列答案見解析,數(shù)學(xué)期望,②概率為.

【解析】

1)由語文數(shù)學(xué)英語三個(gè)興趣小組的人數(shù)之比為,利用分層抽樣方法確定抽取的人數(shù).

2)①根據(jù)抽取的7人中恰好有5人三科成績?nèi)考案瘢溆?/span>2人三科成績不全及格.得到隨機(jī)抽取4人中,語文,數(shù)學(xué),英語三科成績?nèi)案竦娜藬?shù)可能人,再求得相應(yīng)概率,列出分布列,再求期望.②設(shè)事件抽取的人中,三科成績?nèi)案竦挠?/span>人,三科成績不全及格的有;事件抽取的人中,三科成績?nèi)案竦挠?/span>人,三科成績不全及格的有”.,且互斥,根據(jù)①利用互斥事件的概率求解.

1)因?yàn)閿?shù)學(xué)英語三個(gè)興趣小組學(xué)生人數(shù)分別為101015人,

所以語文數(shù)學(xué)英語三個(gè)興趣小組的人數(shù)之比為,

因此,采用分層抽樣方法從中抽取人,

應(yīng)從語文數(shù)學(xué)英語三個(gè)興趣小組中分別抽取.

2)①依題意,得隨機(jī)變量的所有可能取值為.

所以,.

因此,所求隨機(jī)變量的分布列為

.

②依題意,設(shè)事件抽取的人中,三科成績?nèi)案竦挠?/span>人,三科成績不全及格的有;事件抽取的人中,三科成績?nèi)案竦挠?/span>人,三科成績不全及格的有”.

則有,且互斥.

由①知,,

所以

故事件發(fā)生的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Px,y),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記xy關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說法正確的是(  )

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖一,,,分別為,的中點(diǎn),上,且,中點(diǎn),將沿折起,沿折起,使得,重合于一點(diǎn)(如圖二),設(shè)為

1)求證:平面

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對該方案進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該方案,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對該方案進(jìn)行評分,并將評分分成,,,七組,繪制成如圖所示的頻率分布直方圖.

相關(guān)規(guī)則為①采用百分制評分,內(nèi)認(rèn)定為對該方案滿意,不低于80分認(rèn)定為對該方案非常滿意,60分以下認(rèn)定為對該方案不滿意;②學(xué)生對方案的滿意率不低于即可啟用該方案;③用樣本的頻率代替概率.

1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該方案的概率,并根據(jù)頻率分布直方圖求學(xué)生對該方案評分的中位數(shù).

2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該方案,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)F任作兩條互相垂直的直線,分別與拋物線E交于A,B兩點(diǎn)和C,D兩點(diǎn),則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是直角梯形,AB2CD2PD2,PC,且有PDAD,ADCD,ABCD.

1)證明:PD⊥平面ABCD;

2)若四棱錐PABCD的體積為,求四棱錐PABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)在點(diǎn)處的切線是否過定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請說明理由.

2)若有最大值,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求在點(diǎn)處的切線方程;

2)(i)若恒成立,求的取值范圍;

i i)當(dāng)時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的點(diǎn),AB3,BC4,AC5,CC17,過三點(diǎn)A、MC1作截面,當(dāng)截面周長最小時(shí),截面將三棱柱分成的上、下兩部分的體積比為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案