17.將23化為二進制數(shù)為( 。
A.10111B.10101C.11101D.00110

分析 利用“除k取余法”是將十進制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:23÷2=11…1
11÷2=5…1
5÷2=2…1
2÷2=1…0
1÷2=0…1
故23(10)=10111(2)
故選:A.

點評 本題考查的知識點是十進制與其它進制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,直棱柱ABCD-A1B1C1D1,底面ABCD是平行四邊形,AA1=AB=B1D1=3,BC=2,E是邊B1C1的中點,F(xiàn)是邊CC1上的動點,
(1)當(dāng)C1F=BC時,求證:BF⊥平面D1EF;
(2)若BE⊥EF,求三棱錐B-D1EF體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,點P在棱DF上.
(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;
(2)若二面角D-AP-C的余弦值為$\frac{{\sqrt{6}}}{3}$,求PF的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若0<a<1,b>0,且${a^b}+{a^{-b}}=2\sqrt{2}$,則ab-a-b等于( 。
A.$\sqrt{6}$B.2或-2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,D在BC上,AD平分∠BAC,若AB=3,AC=1,∠BAC=60°,則AD=$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinx(sinx+cosx).
(I)求f(x)的最小正周期及對稱中心坐標;
(II)求f(x)定義在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)an是${(1-\sqrt{x})^n}$的展開式中x項的系數(shù)(n=2,3,4,…),若${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$,則bn的最大值是(  )
A.$\frac{{9-2\sqrt{14}}}{25}$B.$\frac{2}{33}$C.$\frac{3}{50}$D.$\frac{{7-2\sqrt{6}}}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.平面直角坐標系xOy中,$A(-2,0),B(-\frac{1}{2},0),P({x_0},{y_0})$,滿足:PA<2PB,則直線x0x+y0y=1與圓x2+y2=1的公共點個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案