9.設(shè)等差數(shù)列{an}的前n項和為Sn,已知S10=100,則a2+a9=20.

分析 由題意可得a1+a10=20,再由等差數(shù)列的性質(zhì)可得a2+a9=a1+a10=20.

解答 解:由題意和等差數(shù)列的求和公式可得S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5(a1+a10)=100,
∴a1+a10=20,由等差數(shù)列的性質(zhì)可得a2+a9=a1+a10=20,
故答案為:20.

點評 本題考查等差數(shù)列的求和公式和性質(zhì),屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.直線y=3a與函數(shù)y=|ax+1-1|(a>0且a≠1)的圖象有兩個公共點,則a的取值范圍是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線l:y=2x+1及曲線C:y=x2-2x+sinθ.
①求證:直線l與曲線C有兩個不同的交點;
②求線段AB的中點P的坐標;
③求弦長|AB|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,如果輸入的t=0.1,則輸出的n=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,且經(jīng)過點(0,1).
(1)求橢圓C的標準方程;  
(2)過點D(1,0)且不過點E(2,1)的直線與橢圓C交于A,B兩點,直線AE與直線x=3交于點M,試判斷直線BM與直線DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.正三棱柱ABC-A1B1C1中,AB=2=AA1,則直線AC1與平面BCC1B1所成角的正弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合M={x|-2≤x≤2},N={x|x-1>0},則M∩N=( 。
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={3,4,5},B={2,3},則A∩B等于( 。
A.{3}B.{3,4}C.{3,4,5}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC中,∠C=90°,CB=CA=3,△ABC所在平面內(nèi)一點M滿足:$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,則$\overrightarrow{MB}$•$\overrightarrow{MC}$=( 。
A.-1B.-3C.3$\sqrt{2}$D.3

查看答案和解析>>

同步練習冊答案