分析 根據(jù)題,過取BC的中點(diǎn)E,連接C1E,AE,證明AE⊥面BB1C1C,推出∠AC1E就是AC1與平面BB1C1C所成的角,解直角三角形AC1E即可.
解答 解:取BC的中點(diǎn)E,連接C1E,AE
則AE⊥BC,
正三棱柱ABC-A1B1C1中,
∴面ABC⊥面BB1C1C,
面ABC∩面BB1C1C=BC,
∴AE⊥面BB1C1C,
∴∠AC1E就是AC1與平面BB1C1C所成的角,
在Rt△AC1E中,∵AB=AA1,
sin∠AC1E=$\frac{AE}{{AC}_{1}}$=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
故答案為:$\frac{\sqrt{6}}{4}$.
點(diǎn)評 考查直線和平面所成的角,求直線和平面所成的角關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 6 | C. | 3$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com