6.求經(jīng)過三點A(1,4),B(-2,3),C(4,-5)的圓的方程.

分析 設圓的方程為x2+y2+Dx+Ey+F=0,將A、B、C的坐標代入得到關(guān)于D、E、F的方程組,解之得到圓的方程.

解答 解:設經(jīng)過三點A(1,4),B(-2,3),C(4,-5)的圓的方程為x2+y2+Dx+Ey+F=0,
∵點A(1,4),B(-2,3),C(4,-5)三點在圓上,
∴將A、B、C的坐標代入,
可得$\left\{\begin{array}{l}{D+4E+F+17=0}\\{-2D+3E+F+13=0}\\{4D-5E+F+41=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{D=-2}\\{E=2}\\{F=-23}\end{array}\right.$,故圓的方程為x2+y2 -2x+2y-23=0.

點評 本題給出經(jīng)過三點的圓,求圓的方程,著重考查了圓的一般方程、點與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.(1)實數(shù)m取什么數(shù)值時,復數(shù)z=m2-1+(m2-m-2)i分別是:
①實數(shù)?
②虛數(shù)?
③純虛數(shù)?
(2)已知$\frac{m}{1+i}$=1-ni,(m、n∈R,i是虛數(shù)單位),求m、n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若cos(α+$\frac{π}{2}$)=-$\frac{1}{2}$,α∈($\frac{π}{2}$,π),則cos(π-α)值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,則f(1)+f(2)+f(3)+…+f(2011)=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求函數(shù)f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)的周期及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若C${\;}_{10}^{2r}$=C${\;}_{10}^{9-r}$,則實數(shù)r的值為1或3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖所示,將圖(1)中的正方體截去兩個三棱錐,得到圖(2)中的幾何體,則該幾何體的側(cè)視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,在邊長為$5+\sqrt{2}$的正方形ABCD中,以A為圓心畫一個扇形,以O為圓心畫一個圓,M,N,K為切點,以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個圓錐,求圓錐的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設f(x)是R上的偶函數(shù),并且在[0,+∞)上單調(diào)遞減,則f(-1),f(-3),f(5)的大小順序是(  )
A.f(-1)>f(-3)>f(5)B.f(-1)>f(5)>f(-3)C.f(5)>f(-1)>f(-3)D.f(-3)>f(-1)>f(5)

查看答案和解析>>

同步練習冊答案