精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
設函數,且不等式的解集為,
(1)求的值;
(2)解關于的不等式

(1)b=2
(2)      
空集
  ..

解析試題分析:解:(1)由 函數,且不等式
解集為 知 ,
       所以...............4分
(2)........5分
     
    不等式的解集為空集  
    ..........10分
綜上:      
   空集
  ....................12分.
考點:試題考查了一元二次不等式的解法。
點評:解決該試題的關鍵是利用不等式的解集是不等式成立的充要條件來得到參數的值,進而分析得到,他那哦故事要對于根大小不定的求解,分情況討論,易忽略端點值,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
為了預防流感,某學校對教室用藥熏消毒法進行消毒. 已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為(a為常數),

如圖所示,根據圖中提供的信息,回答下列問題:
(Ⅰ)從藥物釋放開始,求每立方米空氣中的含藥量
y(毫克)與時間t(小時)之間的函數關系式?
(Ⅱ)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室,那從藥物釋放開始,至少需要經過多少小時后,學生才能回到教室.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)為了預防流感,某學校對教室用藥熏消毒法進行消毒。已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為,如圖所示。

(1)請寫出從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數關系式;
(2)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室。那么,從藥物釋放開始,至少需要經過多少小時后,學生才能回到教室。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數,其中
(Ⅰ)求上的單調區(qū)間;
(Ⅱ)求為自然對數的底數)上的最大值;
(III)對任意給定的正實數,曲線上是否存在兩點、,使得是以原點為直角頂點的直角三角形,且此三角形斜邊中點在軸上?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分15分)
為了保護環(huán)境,發(fā)展低碳經濟,某單位在國家科研部門的支持下,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數的圖象過點(1,13),圖像關于直線對稱。
(1)求的解析式。
(2)已知,,
① 若函數的零點有三個,求實數的取值范圍;
②求函數在[,2]上的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知某公司生產某品牌服裝的年固定成本為10萬元,每生產一千件,需要另投入2.7萬元.設該公司年內共生產該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(I)寫出年利潤(萬元)關于年產量(千件)的函數關系式;
(Ⅱ)年生產量為多少千件時,該公司在這一品牌服裝的生產中所獲年利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題14分)已知函數。
(Ⅰ)求函數的定義域;
(Ⅱ)用定義判斷的奇偶性;

查看答案和解析>>

同步練習冊答案