已知數(shù)列{an}的通項(xiàng)公式an=2n+n,則其前n項(xiàng)和Sn=
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:∵an=2n+n,
∴其前n項(xiàng)和Sn=(2+22+…+2n)+(1+2+3+…+n)
=
2(2n-1)
2-1
+
n(n+1)
2
,
=2n+1-2+
n(n+1)
2
,
故答案為:2n+1-2+
n(n+1)
2
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|1<x<5},N={x|y=
x-2
},則M∩N=( 。
A、[2,5)
B、(1,5)
C、(2,5]
D、[1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在調(diào)試某設(shè)備的線路中,要選下列備用電阻之一,備用電阻由小到大已排好為0.5kΩ,1.3kΩ,2kΩ,3kΩ,5kΩ,5.5kΩ,若用分?jǐn)?shù)法,則第二次試點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)1是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓C2
x2
25
+
y2
9
=1的公共焦點(diǎn),A,B是兩曲線分別在第一,三象限的交點(diǎn),且以F1,F(xiàn)2,A,B為頂點(diǎn)的四邊形的面積為6
6
,則雙曲線C1的離心率為(  )
A、
2
10
5
B、
10
3
C、
3
5
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
ex
2
-e-x,且f(a)=2,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3•a4=117,a2+a5=22
(1)求通項(xiàng)an
(2)若數(shù)列{bn}是等差數(shù)列且bn=
Sn
n+c
,求非零常數(shù)c;
(3)求f(n)=
bn
(n+36)•bn+1
(n∈N+)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組數(shù)據(jù)中,數(shù)值相等的是( 。
A、(25)10和(10110)2
B、(13)10和(1101)2
C、(11)10和(1100)2
D、(10)10和(10)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)滿足f(x+3)=f(x),f(2)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將一個(gè)質(zhì)點(diǎn)隨機(jī)投入如圖所示的正方形中,則質(zhì)點(diǎn)落在由C1,C2所圍成的圖形內(nèi)的概率為
 
,其中C1:y=
ex-1
e-1
,C2:y=
x

查看答案和解析>>

同步練習(xí)冊(cè)答案