如圖,在棱長為a的正方體ABCD-A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點,求證:
(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)AC、D1C,Q是AC的中點,從而PQ∥D1C,由此能證明PQ∥平面DCC1D1
(2)取CD中點G,連結(jié)EG、FG,由已知得平面FGE∥平面BB1D1D,由此能證明EF∥平面BB1D1D.
解答: (1)證明:連結(jié)AC、D1C,
∵ABCD是正方形,∴Q是AC的中點,
又P是AD1的中點,∴PQ∥D1C,
∵PQ?平面DCC1D1,D1C?平面DCC1D1
∴PQ∥平面DCC1D1
(2)證明:取CD中點G,連結(jié)EG、FG,
∵E,F(xiàn)分別是BC,C1D1的中點,
∴FG∥D1D,EG∥BD,
又FG∩EG=G,∴平面FGE∥平面BB1D1D,
∵EF?平面FGE,∴EF∥平面BB1D1D.
點評:本題考查直線與平面平行的證明,是基礎(chǔ)題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={1,2,5},B={2,3,4},則A∩B=( 。
A、∅
B、{2}
C、{1,2}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l經(jīng)過點M(1,5)、傾斜角為
π
3
,則直線l的參數(shù)方程可為(  )
A、
x=1-
1
2
t
y=5+
3
2
t
B、
x=1+
3
2
t
y=5+
1
2
t
C、
x=-1+
1
2
t
y=-5+
3
2
t
D、
x=1+
1
2
t
y=5+
3
2
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知四棱錐P-ABCD中,底面ABCD是菱形,AB=PA=PD=2,∠ABD=60°,E是AD的中點,點Q是PC的中點.
(Ⅰ)求證:BC⊥平面BPE;
(Ⅱ)若二面P-AD-B的大小為120°,試求BQ與平ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,5,-1),
b
=(-2,3,5)且(k
a
+
b
)⊥(
a
-3
b
),則k=(  )
A、
103
3
B、
104
3
C、
106
3
D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(-1,0,1),向量
b
=(2,0,k),且滿足向量
a
b
,則k等于( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正方形ABCD內(nèi)任取一點P,則點P到點A的距離小于1的概率為(  )
A、
π
2
B、
1
2
C、
π
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(千臺),其總成本為G(x)(萬元),其中固定成本為3.2萬元,并且每生產(chǎn)1千臺的生產(chǎn)成本為4萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.5x2+8x-1.2,0≤x≤5
3x+11.4            , x>5 
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(Ⅰ)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(Ⅱ)工廠生產(chǎn)多少千臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=(m2+m-5)xm為定義域是R的偶函數(shù),則實數(shù)m=
 

查看答案和解析>>

同步練習(xí)冊答案