3.若復(fù)數(shù)z=log2(x2-3x-3)+ilog2(x-3)為實(shí)數(shù),則x的值為4.

分析 由虛部為0且實(shí)部的真數(shù)大于0列式求得x值.

解答 解:∵復(fù)數(shù)z=log2(x2-3x-3)+ilog2(x-3)為實(shí)數(shù),
∴$\left\{\begin{array}{l}{{x}^{2}-3x-3>0}\\{x-3=1}\end{array}\right.$,解得:x=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{3}$sin2x+cos2x的最小正周期為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某公司一年購買某種貨物600噸,每次購買x噸,運(yùn)費(fèi)為6萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元.要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x的值是30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,E為棱CD的中點(diǎn),則( 。
A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是奇函數(shù),且在R上是增函數(shù)B.是偶函數(shù),且在R上是增函數(shù)
C.是奇函數(shù),且在R上是減函數(shù)D.是偶函數(shù),且在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)m,n滿足$\frac{m}{1+i}$=1-ni(其中i是虛數(shù)單位),則雙曲線mx2-ny2=1的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(ωx-φ),$(ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過點(diǎn)$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,且相鄰兩條對(duì)稱軸的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對(duì)邊,若$f({\frac{A}{2}})+cosA=\frac{1}{2}$,求∠A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z=$\frac{i}{2-i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案