14.某公司一年購買某種貨物600噸,每次購買x噸,運費為6萬元/次,一年的總存儲費用為4x萬元.要使一年的總運費與總存儲費用之和最小,則x的值是30.

分析 由題意可得:一年的總運費與總存儲費用之和=$\frac{600}{x}×6$+4x,利用基本不等式的性質(zhì)即可得出.

解答 解:由題意可得:一年的總運費與總存儲費用之和=$\frac{600}{x}×6$+4x≥4×2×$\sqrt{\frac{900}{x}•x}$=240(萬元).
當且僅當x=30時取等號.
故答案為:30.

點評 本題考查了基本不等式的性質(zhì)及其應用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.若sinθ=-$\frac{1}{3}$,tanθ>0,則cosθ=$-\frac{2\sqrt{2}}{3}$,tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若x、y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+y-3≥0}\\{x-2y≤0}\end{array}\right.$,則z=x+2y的取值范圍是( 。
A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.等差數(shù)列{an}的首項為1,公差不為0.若a2,a3,a6成等比數(shù)列,則{an}前6項的和為( 。
A.-24B.-3C.3D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.從分別寫有1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設x、y、z為正數(shù),且2x=3y=5z,則(  )
A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設$\overrightarrow{m}$,$\overrightarrow{n}$為非零向量,則“存在負數(shù)λ,使得$\overrightarrow{m}$=λ$\overrightarrow{n}$”是$\overrightarrow{m}$•$\overrightarrow{n}$<0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若復數(shù)z=log2(x2-3x-3)+ilog2(x-3)為實數(shù),則x的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|+|$\overrightarrow{a}$-$\overrightarrow$|的最小值是4,最大值是$2\sqrt{5}$.

查看答案和解析>>

同步練習冊答案