19.A,B兩地之間隔著一個水塘(如圖),現(xiàn)選擇另一點C,測得CA=10$\sqrt{7}$km,CB=10km,∠CBA=60°求A、B兩點之間的距離.

分析 過C作CD⊥AB于D,使用勾股定理依次解出BD,CD,AD,則AB=AD+BD.

解答 解:過C作CD⊥AB于D
∵∠CBA=60°,∴BD=5km,CD=5$\sqrt{3}$km.
在Rt△ACD中,AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=25km.
∴AB=AD+BD=30km.

點評 本題考查利用數(shù)學(xué)知識解決實際問題,考查勾股定理的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x^2}{1+x^2}$,
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)求證f(x)+f($\frac{1}{x}$)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.高二數(shù)學(xué)期中測試中,為了了解學(xué)生的考試情況,從中抽取了n個學(xué)生的成績(滿分為100分)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取3名參加志愿者活動,所抽取的3名同學(xué)中至少有一名成績在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓中心在原點,焦點在坐標軸上,焦距為$2\sqrt{13}$,另一雙曲線與橢圓有公共焦點,且橢圓半長軸比雙曲線的半實軸大4,橢圓離心率與雙曲線的離心率之比為3:7,求橢圓方程和雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知矩陣$[\begin{array}{l}{1}&{2}\\{2}&{a}\end{array}]$的屬于特征值b的一個特征向量為$[\begin{array}{l}{1}\\{1}\end{array}]$,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A、B是球O的球面上兩點,∠AOB=90°,C為該球面上的動點,若三棱錐O-ABC體積的最大值為$\frac{125}{6}$,則球O的表面積為100π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是一個幾何體的三視圖,根據(jù)圖中的數(shù)據(jù)可得該幾何體的體積為( 。
A.36πB.34πC.32πD.30π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)遞減,且f(2)=0,若f(x-1)>0,則x的取值范圍為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如表:
初一年級初二年級初三年級
女生373xy
男生377370z
在全校學(xué)生中隨機抽取1名,抽到初二年級女生的概率是0.19,已知y≥245,z≥245,則初三年級中女生比男生多的概率為$\frac{5}{11}$.

查看答案和解析>>

同步練習(xí)冊答案