19.對(duì)于數(shù)列{xn},若對(duì)任意n∈N*,都有$\frac{{x}_{n}+{x}_{n+2}}{2}$<xn+1成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)bn=2t-$\frac{tn-1}{{2}^{n-1}}$,若數(shù)列b3,b4,b5,…是“減差數(shù)列”,則實(shí)數(shù)t的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,1]

分析 數(shù)列b3,b4,b5,…是“減差數(shù)列”,可得n≥3時(shí),bn+bn+2<2bn+1,代入化簡即可得出.

解答 解:∵數(shù)列b3,b4,b5,…是“減差數(shù)列”,∴n≥3時(shí),bn+bn+2<2bn+1,
∴2t-$\frac{tn-1}{{2}^{n-1}}$+2t-$\frac{t(n+2)-1}{{2}^{n+1}}$<2$(2t-\frac{t(n+1)-1}{{2}^{n}})$,
化為:4(tn-1)+t(n+2)-1>4t(n+1)-4,
∴t$>\frac{1}{n-2}$,∵n≥3,∴$\frac{1}{n-2}$≤1,
∴t>1.
∴實(shí)數(shù)t的取值范圍是(1,+∞).
故選:C.

點(diǎn)評(píng) 本題考查了新定義“減差數(shù)列”、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{{2x-{x^2}}}$,則f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)y=f(t)是某港口水的深度關(guān)于時(shí)間t(時(shí))的函數(shù),其中0<t≤24,下表是該港口某一天從0至24時(shí)記錄的時(shí)間t與水深y的關(guān)系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt-φ)的圖象.根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為( 。
A.y=12+3sin$\frac{πt}{6}$,t∈[0,24]B.y=12+3sin($\frac{πt}{6}$+π),t∈[0,24]
C.y=12+3sin$\frac{πt}{12}$,t∈[0,24]D.y=12+3sin($\frac{πt}{12}$+$\frac{π}{2}$),t∈[0,24]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若三棱錐的三條側(cè)棱兩兩垂直,且側(cè)棱長均為$\sqrt{3}$,則三棱錐的體積與其外接球體積之比是$\frac{\sqrt{3}}{9π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,AB=2,AC=3,∠A=60°,D為線段BC上一點(diǎn),且2BD=CD,則AD=$\frac{\sqrt{37}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中角A,B,C所對(duì)的邊長分別為a,b,c,且sinAcosC+$\frac{1}{2}$sinC=sinB.
(Ⅰ)求角A的大。
(Ⅱ)若a=2,求△ABC周長的最大值及相應(yīng)的b,c值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{π}{2}$-α)=$\frac{5}{13}$,且α是第四象限的角,則tan(2π-α)=( 。
A.-$\frac{12}{5}$B.$\frac{12}{5}$C.±$\frac{12}{5}$D.±$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有下列命題
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
③若函數(shù)f(x)=(x+1)(x+a)為偶函數(shù),則a=-1;
④若x>0,y>0且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是6
⑤設(shè)函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f($\frac{3}{2}$)=$\frac{3}{2}$
其中所有正確說法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某同學(xué)來學(xué)校上學(xué),時(shí)間t(分鐘)與路程s(米)的函數(shù)關(guān)系如圖所示,現(xiàn)有如下幾種說法:
①前5分鐘勻速走路
②5至13分鐘乘坐公共汽車
③13至22分鐘勻速跑步
④13至22分鐘加速走路
其中正確的是①③.(注意:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊答案