已知數(shù)列{an}是公差不為零的等差數(shù)列,a10=15,且a3、a4、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an
2n
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設(shè)數(shù)列{an}的公差為d,(d≠0),依題意,解方程組
a10=15
a42=a3a7
可求得
a1=-3
d=2
,從而可得數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)由于bn=
an
2n
=
2n-5
2n
,于是Tn=
-3
2
+
-1
22
+
1
23
+…+
2n-5
2n
,利用錯(cuò)位相減法即可求得數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(Ⅰ)設(shè)數(shù)列{an}的公差為d,(d≠0),
由已知得:
a10=15
a42=a3a7
,即
a1+9d=15
(a1+3d)2=(a1+2d)(a1+6d)
,解之得:
a1=-3
d=2
,
∴an=2n-5,(n∈N*).
(Ⅱ)∵bn=
an
2n
=
2n-5
2n
,n≥1.
Tn=
-3
2
+
-1
22
+
1
23
+…+
2n-5
2n
,①
1
2
Tn=
-3
22
+
-1
23
+
1
24
+…+
2n-7
2n
+
2n-5
2n+1
,②
①-②得:
1
2
Tn=
-3
2
+2(
1
22
+
1
23
+…+
1
2n
)-
2n-5
2n+1
=-
1
2
+
1-2n
2n+1
,
∴Tn=-1-
2n-1
2n
(n∈N*).
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式與錯(cuò)位相減法求和,考查方程思想與等價(jià)轉(zhuǎn)化思想的綜合運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過A(5,2),B(3-
2
,2-
2
),且圓心C在直線x=3上.
(1)求圓C的方程;
(2)求過D(0,1)點(diǎn)且與圓C相切的兩條切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中,輸入f0(x)=cosx,則輸出的是( 。
A、sinxB、-sinx
C、cosxD、-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|2≤x<4},B={x|x≥3},則A∩B=( 。
A、[2,4)
B、[3,+∞)
C、[3,4)
D、[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的方程為:y2=2px(p>0),焦點(diǎn)為F,過點(diǎn)F作直線交拋物線C于A、B兩點(diǎn),且
AF
=2
F B

(1)若設(shè)直線AB的方程為x=ay+
p
2
的形式,求a2的值;
(2)若線段AB的中點(diǎn)到拋物線的準(zhǔn)線的距離為
9
4
,求C的方程;
(3)設(shè)P(x0,y0)(x0>2)是(2)中所求拋物線C上的動(dòng)點(diǎn),定點(diǎn)Q(2,0),線段PQ的垂直平分線與x軸交于點(diǎn)M(m,0),求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-2x+1)ex(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)定義:若函數(shù)h(x)在區(qū)間[s,t](s<t)上的取值范圍為[s,t],則稱區(qū)間[s,t]為函數(shù)h(x)的“域同區(qū)間”.試問函數(shù)f(x)在(1,+∞)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{an},把a(bǔ)1作為新數(shù)列{bn}的第一項(xiàng),把a(bǔ)i或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項(xiàng),數(shù)列{bn}稱為數(shù)列{an}的一個(gè)生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個(gè)生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
1
2n
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項(xiàng)和.
(Ⅰ)寫出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足S3n=
1
7
(1-
1
8n
),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為{x|x=
2k-1
2n
,k∈N*,k≤2n-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=1-x2+ln(x+1)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2 (k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x方程
x2
a
-x=lnx有唯一的解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案