分析 (Ⅰ)判斷橢圓焦點(diǎn)在x軸且b=1,利用a2-c2=1,$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,求解a,即可得到橢圓方程.
(Ⅱ)求出$\overrightarrow{OP}$•$\overrightarrow{OQ}$的表達(dá)式.設(shè)A(-1,t),B(-1,-t),將x=-1代入橢圓方程,求出AB坐標(biāo),設(shè)M(x0,y0),代入橢圓方程,求出AM方程,然后求解Q縱坐標(biāo),P的縱坐標(biāo),$\overrightarrow{OP}$•$\overrightarrow{OQ}$的表達(dá)式求出定值.
解答 解:(Ⅰ)依題意,橢圓焦點(diǎn)在x軸且b=1…1’,
即a2-c2=1,而$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$…3’,
∴a=2…4’,
從而橢圓方程為$\frac{x^2}{4}+{y^2}=1$…5’.
(Ⅱ)∵$\overrightarrow{OP}=(-4,{y_P})$,$\overrightarrow{OQ}=(-4,{y_Q})$,
∴$\overrightarrow{OP}•\overrightarrow{OQ}=16+{y_P}•{y_Q}$…6’.
設(shè)A(-1,t),B(-1,-t),將x=-1代入C的方程,
得${t^2}=\frac{3}{4}$,∴A(-1,$\frac{{\sqrt{3}}}{2}$),B(-1,-$\frac{{\sqrt{3}}}{2}$)…7’,
又設(shè)M(x0,y0),代入C的方程,得$\frac{x_0^2}{4}+y_0^2=1$…8’,
AM:$y-t=\frac{{{y_0}-t}}{{{x_0}+1}}(x+1)$,令x=-4,
得${y_Q}=t-3•\frac{{{y_0}-t}}{{{x_0}+1}}=\frac{{-3{y_0}+({x_0}+4)t}}{{{x_0}+1}}$…9’,
同理,${y_P}=\frac{{-3{y_0}-({x_0}+4)t}}{{{x_0}+1}}$…10’,
∴${y_P}•{y_Q}=\frac{{{{(-3{y_0})}^2}-{{({x_0}+4)}^2}{t^2}}}{{{{({x_0}+1)}^2}}}$
=$\frac{{9(1-\frac{1}{4}{x_0}^2)-({x_0}^2+8{x_0}+16)•\frac{3}{4}}}{{{{({x_0}+1)}^2}}}$
=$\frac{{-3{x_0}^2-6{x_0}-3}}{{{{({x_0}+1)}^2}}}=-3$…11’,
得$\overrightarrow{OP}•\overrightarrow{OQ}=13$…12’.
注:若通過M與C的左端點(diǎn)重合的特殊情況得出$\overrightarrow{OP}•\overrightarrow{OQ}=13$,后無(wú)一般性證明,可打分至9’.
點(diǎn)評(píng) 本題考查直線與體育的位置關(guān)系的綜合應(yīng)用,向量與圓錐曲線綜合,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9×29 | B. | 10×29 | C. | 10×210 | D. | 10×211 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆甘肅蘭州一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的的體積為( )
B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆甘肅會(huì)寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆甘肅會(huì)寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知,則( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com