分析 利用函數(shù)的奇偶性可把不等式轉(zhuǎn)化到區(qū)間[0,+∞)上,再由單調(diào)性可去掉不等式中的符號“f”,從而化為具體不等式解決.
解答 解:因?yàn)閒(x)為R上的偶函數(shù),所以f(x+1)<f(-$\frac{1}{2}}$)?f(|x+1|)<f($\frac{1}{2}}$),
又f(x)在[0,+∞)上遞增,所以|x+1|<$\frac{1}{2}$.
解得x∈$({-\frac{3}{2},\frac{1}{2}})$.
故答案為$({-\frac{3}{2},\frac{1}{2}})$.
點(diǎn)評 本題考查函數(shù)奇偶性、單調(diào)性的綜合應(yīng)用及抽象不等式的求解,解決本題的關(guān)鍵是利用函數(shù)性質(zhì)化抽象不等式為具體不等式處理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | ||
C. | $\frac{1}{8}$ | D. | 以上答案均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2k-1,2k+2](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [4k+1,4k+3](k∈Z) | D. | [4k+2,4k+4](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>4 | B. | m≥4 | C. | m>-2 | D. | -2<m<4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com