求和:
(1)(a-1)+(a2-2)+…+(an-n)a≠0)
(2)數(shù)列{
1
n(n+1)
}的前n項和Sn
考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)對a=1和a≠1分類,然后利用分組求和得答案.
(2)直接利用裂項相消法求數(shù)列的和.
解答: 解:(1)當(dāng)a=1時,
(a-1)+(a2-2)+…+(an-n)=n-(1+2+…+n)=n-
n(n+1)
2
=
n-n2
2
;
當(dāng)a≠1時,(a-1)+(a2-2)+…+(an-n)
=(a+a2+…+an)-(1+2+…+n)=
a(1-an)
1-a
-
n(n+1)
2
;
(2)∵
1
n(n+1)
=
1
n
-
1
n+1
,
∴數(shù)列{
1
n(n+1)
}的前n項和Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1
點評:本題考查了數(shù)列的求和方法,訓(xùn)練了分組求和和裂項相消法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義A-B={x|x∈A且x∉B},若A={2,4,6,8,10},B={1,4,8},則A-B=( 。
A、{4,8}
B、{1,2,6,10}
C、{1}
D、{2,6,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:ax2+2(a+1)x+a+1=0,a∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-(m+2)x+m,若函數(shù)圖象與x軸的兩個交點分別位于x=-1的兩側(cè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對邊長分別為a,b,c,且a+c=2b,∠C=2∠A,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S={x|x是平行四邊形或梯形},A={x|x是平行四邊形},B={x|x是菱形},C={x|x是矩形},求B∪C,∁AB,∁SA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-3x-10≤0},B={x|1≤x≤2m-1},若A∩B=B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x2+ax+1=0},B={x|x<0},若A是B的真子集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-3x+2=0},B={x|x2-x+2m=0},若A∩B=B,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案