已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可以是(  )

A.f(x)=

B.f(x)=

C.f(x)=-1

D.f(x)=x-

 

A

【解析】由函數(shù)圖象可知,函數(shù)f(x)為奇函數(shù),應(yīng)排除B、C;若函數(shù)圖象為f(x)=x-,則x→+∞時(shí),f(x)→+∞,排除D.故選A.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:解答題

已知函數(shù)f(x)=2cos2x+sin2x-+1(x∈R).

(1)求f(x)的最小正周期;

(2)求f(x)的單調(diào)遞增區(qū)間;

(3)若x∈[-,],求f(x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:填空題

若平面直角坐標(biāo)系內(nèi)兩點(diǎn)P,Q滿足條件:①P,Q都在函數(shù)f(x)的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(P,Q)是函數(shù)f(x)的一個(gè)“友好點(diǎn)對(duì)”(點(diǎn)對(duì)(P,Q)與點(diǎn)對(duì)(Q,P)為同一個(gè)“友好點(diǎn)對(duì)”).已知函數(shù)f(x)=,則f(x)的“友好點(diǎn)對(duì)”有________個(gè).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:填空題

已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:填空題

若曲線|y|=2x+1與直線y=b沒(méi)有公共點(diǎn),則b的取值范圍為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-6對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:解答題

已知定義域?yàn)镽的函數(shù)f(x)為奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x-1.

(1)求f(x)在[-1,0)上的解析式;

(2)求f(24)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-6對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:選擇題

已知函數(shù)f(x)=log0.5(x2-ax+3a)在[2,+∞)單調(diào)遞減,則a的取值范圍是(  )

A.(-∞,4] B.[4,+∞)

C.[-4,4] D.(-4,4]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:解答題

對(duì)于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).已知f(x)=ax2+(b+1)x+b-1(a≠0).

(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+對(duì)稱,求b的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:選擇題

若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是(  )

A.(-∞,2] B.[2,+∞)

C.[-2,+∞) D.(-∞,-2]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案