【題目】如圖,已知橢圓O 的右焦點為F,點B,C分別是橢圓O的上、下頂點,點P是直線ly=-2上的一個動點(y軸交點除外),直線PC交橢圓于另一點M.

(1)當(dāng)直線PM過橢圓的右焦點F時,求FBM的面積;

(2)記直線BMBP的斜率分別為k1,k2,求證:k1·k2為定值.

【答案】1 ,(2)見解析.

【解析】試題分析:

(1)由題知B(0,1)C(0,-1) ,滿足題意時,直線PM的方程為,與橢圓方程聯(lián)立可得: ,直線BF的方程為,則三角形的高為,底邊,三角形的面積為.

(2)設(shè)P(m,-2),且m≠0則直線PM的方程為,與橢圓方程聯(lián)立可得,則,據(jù)此可得k1·k2為定值.

試題解析:

(1)由題知B(01),C(0,-1),焦點F(,0)

當(dāng)直線PM過橢圓的右焦點F時,

直線PM的方程為1,即yx1.

聯(lián)立解得 (),所以M.連接BF,則直線BF的方程為1,

xy0,

BFa2,所以點M到直線BF的距離為

d.

SMBF·BF·d×2×.

(2)設(shè)P(m,-2),且m≠0

則直線PM的斜率為k=-,

則直線PM的方程為y=-x1,

聯(lián)立化簡得x2x0,

解得M,

所以k1m,k2=-

所以k1·k2=-·m=-為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點到定點的距離比它到直線的距離小1,設(shè)動點的軌跡為曲線,過點的直線交曲線兩個不同的點,過點分別作曲線的切線,且二者相交于點.

(Ⅰ)求曲線的方程;

(Ⅱ)求證: ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,其前項和滿足:.

1)求數(shù)列的通項公式

2)設(shè),求證:

3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對任意,有恒成立.若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,,,.

求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

將函數(shù)的圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為O為坐標(biāo)原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于PQ兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,B為橢圓上任一點,F為橢圓左焦點,已知的最小值與最大值之和為4,且離心率,拋物線的通徑為4

求橢圓和拋物線的方程;

設(shè)坐標(biāo)原點為O,A為直線與已知拋物線在第一象限內(nèi)的交點,且有

試用k表示A,B兩點坐標(biāo);

是否存在過A,B兩點的直線l,使得線段AB的中點在y軸上?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

同步練習(xí)冊答案