18.某人駕車遇到險情而緊急制動并以速度v(t)=120-60t(t為事件單位s)形式至停止,則從開始制動到汽車完全停止所形式的距離(單位:m)為( 。
A.100B.150C.120D.160

分析 令v(t)=120-60t=0,解得t=2,即汽車在2s后停止,根據(jù)定積分的物理意義可知:汽車剎車距離為S:S=${∫}_{0}^{2}$(120-60t)dt,根據(jù)定積分的計算,即可求得S.

解答 解:令v(t)=120-60t=0,解得:t=2,
汽車剎車距離為S:S=${∫}_{0}^{2}$(120-60t)dt=(120t-30t2)${丨}_{0}^{2}$=120,
故答案選:C.

點評 本題考查定積分的計算,定積分的物理意義,考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p)-f(q)}{p-q}$>0恒成立,求實數(shù)a的取值范圍;
(2)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p+2)-f(q+2)}{p-q}$>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C的中心在坐標原點,焦點在x 軸上,離心率為$\frac{1}{2}$,短軸的一個端點為(0,$\sqrt{3}$).
(1)求橢圓的標準方程;
(2)若直線 l的斜率存在,且與橢圓C相交于A、B兩點(A、B異于頂點),且以AB為直徑的圓過橢圓的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知一組數(shù)據(jù)1,3,5,7的方差為n,則在二項式(2x-$\frac{1}{\root{3}{x}}$)n的展開式所有項中任取一項,取到有理項的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{3}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知四邊形ABCD是矩形,AB=2BC=2,三角形PAB是正三角形,且平面ABCD⊥平面PCD.
(Ⅰ)若O是CD的中點,證明:BO⊥PA;
(Ⅱ)求平面PAB與平面PAD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.P為橢圓C上一點,F(xiàn)1,F(xiàn)2為兩焦點,$|{P{F_1}}|=13,|{P{F_2}}|=15,tan∠P{F_1}{F_2}=\frac{12}{5}$,則橢圓C的離心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.期初考試,某班數(shù)學優(yōu)秀率為70%,語文優(yōu)秀率為25%,則語文、數(shù)學兩門都優(yōu)秀的百分率至少為13.5%.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在等比數(shù)列{an}中,a2a3a4=8,a7=8,則a1=( 。
A.1B.±1C.2D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某,F(xiàn)有高一學生210人,高二學生270人,高三學生300人,用分層抽樣的方法從這三個年級的學生中隨機抽取n名學生進行問卷調(diào)查,如果已知從高一學生中抽取的人數(shù)為7,那么從高二學生中抽取的人數(shù)為9.

查看答案和解析>>

同步練習冊答案