【題目】在下列向量組中,可以把向量 =(3,2)表示出來(lái)的是( )
A. =(0,0), =(1,2)
B. =(﹣1,2), =(5,﹣2)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(﹣2,3)
【答案】B
【解析】解:根據(jù) , 選項(xiàng)A:(3,2)=λ(0,0)+μ(1,2),則 3=μ,2=2μ,無(wú)解,故選項(xiàng)A不能;
選項(xiàng)B:(3,2)=λ(﹣1,2)+μ(5,﹣2),則3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故選項(xiàng)B能.
選項(xiàng)C:(3,2)=λ(3,5)+μ(6,10),則3=3λ+6μ,2=5λ+10μ,無(wú)解,故選項(xiàng)C不能.
選項(xiàng)D:(3,2)=λ(2,﹣3)+μ(﹣2,3),則3=2λ﹣2μ,2=﹣3λ+3μ,無(wú)解,故選項(xiàng)D不能.
故選:B.
【考點(diǎn)精析】本題主要考查了平面向量的基本定理及其意義的相關(guān)知識(shí)點(diǎn),需要掌握如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為),其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).
(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本(元)表示為航行速度(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的最小正周期為.
(1)求的值;
(2)將函數(shù)的圖像向左平移個(gè)單位,再將得到的圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點(diǎn)為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實(shí)數(shù)a的值;
(2)求經(jīng)過(guò)點(diǎn)A,且在兩坐標(biāo)軸上截距相等的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)A離地面4米,最低點(diǎn)B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設(shè)觀賞視角∠ACB=θ.
(1)若a=1.5,問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角θ最大?
(2)若tanθ= ,當(dāng)a變化時(shí),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側(cè),排法種數(shù)為( )
A. 12 B. 40 C. 60 D. 80
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長(zhǎng)為,直線與橢圓交于、兩點(diǎn).
(1)求橢圓的方程;
(2)若直線與圓相切,探究是否為定值,如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com