13.已知命題P:?x∈R,x-2>lgx,命題q:?x∈R,x2≥0,則( 。
A.p∨q是假命題B.p∧q是真命題C.p∧(¬q)是真命題D.p∨(¬q)是假命題

分析 命題P:取x=10,即可判斷出真假.命題q:利用實(shí)數(shù)的性質(zhì)即可得出真假.再利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題P:取x=10,則10-2=8>lg10=1,因此?x∈R,x-2>lgx,是真命題.
命題q:?x∈R,x2≥0,是真命題.
則p∧q是真命題.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)合命題的真假判定方法、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2-2x+2.
(Ⅰ)若關(guān)于x的不等式f(x)<mx的解集為(1,2),求實(shí)數(shù)m的值;
(Ⅱ)設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$(x>0),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)p:實(shí)數(shù)x滿(mǎn)足x2-4ax+3a2<0(a<0); q:實(shí)數(shù)x滿(mǎn)足x2+2x-8>0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示.
(1)求函數(shù)f(x)的解析式; 
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=2,f(A)=1,求△ABC的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)求三棱錐D-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x-aex,a∈R(e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)與直線(xiàn)y=2x+4平行,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,且x1<x2.求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)$f(x)=lnx+\frac{a}{x-1}$,(a>0)
(Ⅰ)當(dāng)$a=\frac{1}{30}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)$a≥\frac{1}{2}$,x∈(1,+∞)時(shí),求證:$lnx+\frac{a}{x-1}>1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<f′(x)恒成立,且f(0)=2,則不等式f(x)>2ex的解集是( 。
A.(2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知如圖的程序,如果程序執(zhí)行后輸出的結(jié)果是990,那么在UNTIL后面的“條件”應(yīng)為( 。
A.i>9B.i>=9C.i<=8D.i<8

查看答案和解析>>

同步練習(xí)冊(cè)答案