【題目】已知函數(shù)f(x)= + .
(1)求函數(shù)f(x)的定義域和值域;
(2)設F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
【答案】
(1)解:由1+x≥0且1﹣x≥0,得﹣1≤x≤1,
所以函數(shù)的定義域為[﹣1,1],
又[f(x)]2=2+2 ∈[2,4],由f(x)≥0,得f(x)∈[ ,2],
所以函數(shù)值域為[ ,2]
(2)解:因為F(x)= =a + + ,
令t=f(x)= + ,則 = ﹣1,
∴F(x)=m(t)=a( ﹣1)+t= ,t∈[ ,2],
由題意知g(a)即為函數(shù)m(t)= ,t∈[ ,2]的最大值.
注意到直線t=﹣ 是拋物線m(t)= 的對稱軸.
因為a<0時,函數(shù)y=m(t),t∈[ ,2]的圖象是開口向下的拋物線的一段,
①若t=﹣ ∈(0, ],即a≤﹣ ,則g(a)=m( )= ;
②若t=﹣ ∈( ,2],即﹣ <a≤﹣ ,則g(a)=m(﹣ )=﹣a﹣ ;
③若t=﹣ ∈(2,+∞),即﹣ <a<0,則g(a)=m(2)=a+2,
綜上有g(a)=
(3)解:易得 ,
由﹣ ≤g(a)對a<0恒成立,即要使﹣ ≤gmin(a)= 恒成立,
m2﹣2tm≥0,令h(t)=﹣2mt+m2,對所有的t∈[﹣1,1],h(t)≥0成立,
只需 ,
解得m的取值范圍是m≤﹣2或m=0,或m≥2
【解析】(1)由1+x≥0且1﹣x≥0可求得定義域,先求[f(x)]2的值域,再求f(x)的值域;(2)F(x)=a + + ,令t=f(x)= + ,則 = ﹣1,由此可轉化為關于t的二次函數(shù),按照對稱軸t=﹣ 與t的范圍[ ,2]的位置關系分三種情況討論,借助單調性即可求得其最大值;(3)先由(2)求出函數(shù)g(x)的最小值,﹣ ≤g(a)對a<0恒成立,即要使﹣ ≤gmin(a)恒成立,從而轉化為關于t的一次不等式,再根據(jù)一次函數(shù)的單調性可得不等式組,解出即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,對任意<,有>-1,且f(1)=1,下列命題正確的是( )
A. 是單調遞減函數(shù)
B. 是單調遞增函數(shù)
C. 不等式的解集為
D. 不等式的解集為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入單位:千元與月儲蓄單位:千元的數(shù)據(jù)資料,算得,,,附:線性回歸方程中,,,其中,為樣本平均值.
求家庭的月儲蓄y對月收入x的線性回歸方程;
判斷變量x與y之間是正相關還是負相關;
若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為: .估計該校學生每周平均體育運動時間超過4小時的概率;
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函數(shù)h(x)圖象上任意兩點,且滿足 >1,求實數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥ 成立,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點E在線段CD上.
(1)求證:PE⊥BD;
(2)過點D作DM⊥BC交BC于點M,點N為PB中點,若PE∥平面DMN,求 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com