本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,,的值。
,,.
解析試題分析:由y=f(x)為奇函數(shù),知c=0,故f(x)=ax3+bx,所以f'(x)=3ax2+b,f'(1)=3a+b=-6,由導(dǎo)數(shù)f'(x)的 最小值為-12,知b=-12,由此能求出a,b,c的值.
解:∵為奇函數(shù),∴
即 ∴(4分)
∵的最小值為 ∴ (6分)
又直線的斜率為 因此, (8分)
∴,,.(10分)
考點:本題主要考查了導(dǎo)數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
點評:解決該試題的關(guān)鍵是理解導(dǎo)數(shù)幾何意義的運(yùn)用明確導(dǎo)數(shù)的值即為該點處的切線的斜率,只要只要點的坐標(biāo)和導(dǎo)數(shù)值,既可以寫出切線方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間和極值點;
(Ⅱ)若函數(shù)有極值點,記過點與原點的直線斜率為。是否存在使?若存在,求出值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當(dāng)時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)設(shè)函數(shù)f(x)= ,其中
(1)求f(x)的單調(diào)區(qū)間;(2)討論f(x)的極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù).
(1)若x=2是函數(shù)f(x)的極值點,求實數(shù)a的值.
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若函數(shù)在上的最小值為3,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)在及時取得極值.
(I)求的值;
(II)若對于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com