若點(diǎn)M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值是( 。
A、-1
B、-
1
2
C、0
D、1
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,令z=x+2y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入z=x+2y得答案.
解答: 解:由約束條件
x-2y+1≥0
x+y+1≥0
x≤0
作出可行域如圖,

令z=x+2y,化為直線方程的斜截式得:y=-
1
2
x+
z
2
,
由圖可知,當(dāng)直線y=-
1
2
x+
z
2
過可行域內(nèi)的點(diǎn)A(0,
1
2
)時(shí),直線在y軸上的截距最大,
z最大,最大值為z=0+2×
1
2
=1.
故選:D.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長(zhǎng)軸上的一個(gè)頂點(diǎn),若橢圓存在點(diǎn)P,使AP⊥OP,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)同時(shí)滿足下列條件:①周期為π;②定義域?yàn)镽,值域?yàn)閇
1
2
3
2
];③在[0,
π
2
]上是減函數(shù);④f(x)-f(-x)=0,則滿足上述要求的函數(shù)f(x)可以是
 
(寫出一個(gè)即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f (x)滿足對(duì)任意的x1,x2∈(8,+∞)(x1<x2),有f(x1)>f(x2),且函數(shù)y=f(x+8)為偶函數(shù),則( 。
A、f (6)>f (7)
B、f (6)>f (9)
C、f (7)>f (9)
D、f (7)>f (10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知曲線C1:y=-x2+1(y≤0)與x軸交于A,B兩點(diǎn),點(diǎn)P為x軸上方的一個(gè)動(dòng)點(diǎn),點(diǎn)P與A,B連線的斜率之積為-4
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C2的方程;
(Ⅱ)過點(diǎn)B的直線l與C1,C2分別交于點(diǎn)M,Q(均異于點(diǎn)A,B),若以MQ為直徑的圓經(jīng)過點(diǎn)A,求△AMQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d是四條不重合的直線,其中c為a在平面α上的射影,d為b在平面α上的射影,則( 。
A、c∥d⇒a∥b
B、a⊥b⇒c⊥d
C、a∥b⇒c∥d
D、c⊥d⇒a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+alnx在x=1處的切線l與直線x+2y=0垂直,函數(shù)g(x)=f(x)+
1
2
x2-bx.
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)設(shè)x1,x2(x1>x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥
7
2
,求g(x1)-g(x2)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100]
(1)求圖中a的值并計(jì)算[70,100]的人數(shù);
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某游樂園擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)域ABC為主題活動(dòng)園區(qū),∠ACB=60°;AD、CD為游客通道(不考慮寬度),通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.
(Ⅰ)若AC=20m,BC=24m,求AB的長(zhǎng)度.
(Ⅱ)如圖,AB=24m,AD與AB垂直,且∠ADC=120°,∠ABC=θ(45°≤θ≤60°).記游客通道長(zhǎng)度和為L(zhǎng),寫出L關(guān)于θ的關(guān)系式,并求L的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案