已知定義域為R的函數(shù)f (x)滿足對任意的x1,x2∈(8,+∞)(x1<x2),有f(x1)>f(x2),且函數(shù)y=f(x+8)為偶函數(shù),則(  )
A、f (6)>f (7)
B、f (6)>f (9)
C、f (7)>f (9)
D、f (7)>f (10)
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)f(x)在(8,+∞)遞減,再得出函數(shù)的關(guān)于x=8對稱,從而判斷出函數(shù)的大。
解答: 解:∵對任意的x1,x2∈(8,+∞)(x1<x2),有f(x1)>f(x2),
∴f(x)在(8,+∞)遞減,
∵函數(shù)y=f(x+8)為偶函數(shù),
∴函數(shù)f(x)關(guān)于x=8對稱,在(-∞,8)遞增,
如圖示:
,
∴到x=8的距離越小,函數(shù)值越大,
故選:D.
點評:本題考查了函數(shù)的單調(diào)性,函數(shù)的對稱性,函數(shù)的奇偶性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某單位由50名職工,將全體職工隨機按1-50編號,并且按編號順序平均分成10組,先要從中抽取10名職工,各組內(nèi)抽取的編號依次增加5進(jìn)行系統(tǒng)抽樣.
(Ⅰ)若第五組抽出的號碼為22,寫出所有被抽出職工的號碼;
(Ⅱ)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù);
(Ⅲ)在(Ⅱ)的條件下,從體重不輕于73公斤(≥73公斤)的職工中隨機抽取兩名職工,求被抽到的兩名職工的體重之和等于154公斤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+(k+1)x+7有一根在[1,2]時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;則稱函數(shù)f(x)為理想函數(shù).
下面有三個命題:
若函數(shù)f(x)為理想函數(shù),則f(0)=0;
函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0;
其中正確的命題個數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為坐標(biāo)原點,F(xiàn)為拋物線C:y2=4x的焦點,P為C上一點,若|PF|=4,則△POF的面積為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二此函數(shù)的圖象開口向下且經(jīng)過(0,1),對稱軸為x=2且在[0,5]上的最小值為-1,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個動點,則x+2y的最大值是( 。
A、-1
B、-
1
2
C、0
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ax)-
x-a
x
(a≠0).
(1)求此函數(shù)的單調(diào)區(qū)間及最值;
(2)當(dāng)a=1時,是否存在過點(-1,1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-mx+3,在(-∞,-2]上是減函數(shù),在[-2,+∞)上是增函數(shù),則f(1)=
 

查看答案和解析>>

同步練習(xí)冊答案