10.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.16π-16B.8π-8C.16π-8D.8π-16

分析 由已知中的三視圖可得該幾何體為一個(gè)圓柱挖去一個(gè)四棱柱所得的組合體,代入柱體體積公式,可得答案.

解答 解:由已知中的三視圖可得該幾何體為一個(gè)圓柱挖去一個(gè)四棱柱所得的組合體,
圓柱的底面半徑為2,棱柱的底面棱長為2,
兩個(gè)柱體的高均為4,
故組合體的體積V=(π•22-2×2)×4=16π-16,
故選:A

點(diǎn)評 本題考查的知識點(diǎn)是棱柱的體積和表面積,圓柱的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的一條漸近線方程為y=2x,其實(shí)軸長為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A.18B.20C.21D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單位:萬元),調(diào)查顯示x與y具有線性相關(guān)關(guān)系,并由調(diào)查數(shù)據(jù)得到y(tǒng)對x的回歸直線方程為:$\widehat{y}$=0.254x+0.321.由回歸直線方程可知,家庭年收入每增加1萬元,則年飲食支出平均增加( 。
A.0.254萬元B.0.321萬元C.0.575萬元D.-0.254萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={1,2,3,4},B={1,3,5},則A∪B等于( 。
A.{1,3}B.{1,2,3,4,5}C.{2,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時(shí)氣球的高是46m,則河流的寬度BC約等于60m.(用四舍五入法將結(jié)果精確到個(gè)位.參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,$\sqrt{3}$≈1.73.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點(diǎn),AE⊥BD于E(不同于D),延長AE交BC于F,將△ABD沿BD折起,得到三棱錐A1-BCD,如圖2所示.
(1)求證:BD⊥A1F;
(2)若圖1中,AB=2,BC=2$\sqrt{3}$,圖2中M是FC的中點(diǎn),求點(diǎn)M到平面A1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>0,b>0,且a+b=1,則($\frac{1}{a}$+2)($\frac{1}$+2)的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x=1是函數(shù)f(x)=ax3-bx-lnx(a>0,b∈R)的一個(gè)極值點(diǎn),則lna與b-1的大小關(guān)系是( 。
A.lna>b-1B.lna<b-1C.lna=b-1D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案