20.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的一條漸近線方程為y=2x,其實軸長為( 。
A.1B.2C.4D.8

分析 根據(jù)雙曲線的方程求得漸近線方程為y=±$\frac{2}{a}$x,即可求出a的值,

解答 解:∵雙曲線的漸近線方程為 y=±$\frac{2}{a}$x,
又已知一條漸近線方程為y=2x,∴$\frac{2}{a}$=2,a=1,
則實軸長為2a=2
故選:B

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從4名男生和3名女生中任選2人參加演講比賽,
(1)求所選2人都是男生的概率;
(2)求所選2人恰有1名女生的概率;
(3)求所選2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a=log20.5,b=20.5,c=0.52,則a,b,c三個數(shù)的大小關(guān)系是(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1內(nèi)有一個內(nèi)切球O,則在正方體ABCD-A1B1C1D1內(nèi)任取點M,點M在球O內(nèi)的概率是( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$•$\overrightarrow$的值為(  )
A.-4B.8C.-1D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sinα+cosα=-$\sqrt{2}$,則tanα+$\frac{1}{tanα}$的值等于( 。
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x3-x2-3x+3,則曲線y=f(x)在點(1,f(1))處的切線方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓M的半徑為1,若此圓同時與x軸和直線y=$\sqrt{3}$x相切,則圓M的標(biāo)準(zhǔn)方程可能是(  )
A.(x-$\sqrt{3}$)2+(y-1)2=1B.(x-1)2+(y-$\sqrt{3}$)2=1C.(x-1)2+(y+$\sqrt{3}$)2=1D.(x-$\sqrt{3}$)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.16π-16B.8π-8C.16π-8D.8π-16

查看答案和解析>>

同步練習(xí)冊答案