17.設(shè)函數(shù)f(x)=(x+1)lnx-a(x-1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2-e)求a的值;(e為自然對數(shù)的底數(shù),e=2.781828…);
(2)當(dāng)a≤2時,討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)1<x<2時,證明:$\frac{2}{x-1}>\frac{1}{lnx}-\frac{1}{ln(2-x)}$.

分析 (1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義即可求出函的切線斜率,即可求得a的值;
(2)求導(dǎo)數(shù),構(gòu)造輔助函數(shù)g(x)=lnx+$\frac{1}{x}$+1-a,求導(dǎo),令g′(x)=0,求得g(x)的最小值,判斷f′(x)≥0,可判斷函數(shù)的單調(diào)性;
(3)由(2)知f(x)在(1,2)上是增函數(shù),可知(x+1)lnx>2(x-1),即$\frac{1}{lnx}$<$\frac{x+1}{2(x-1)}$利用函數(shù)的單調(diào)性,求得-$\frac{1}{ln(2-x)}$<$\frac{3-x}{2(x-1)}$,根據(jù)對數(shù)函數(shù)的運(yùn)算即可證明不等式成.

解答 解:(1)f′(x)=lnx+$\frac{1}{x}$+1-a,x∈(0,+∞)
由題意可知:$\frac{f(e)-f(2-e)}{e-0}$=f′(e),
整理得:e+1-a(e-1)-(2-e)=e(1+$\frac{1}{e}$+1-a),解得a=2;
(2))f′(x)=lnx+$\frac{1}{x}$+1-a,記g(x)=lnx+$\frac{1}{x}$+1-a,
g′(x)=$\frac{x-1}{{x}^{2}}$,令g′(x)=0,x=1,
∴g(x)min=g(1)=2-a,
∵a≤2,
∴2-a≥0,
∴g(x)≥g(1)=0,f′(x)≥0,
∴函數(shù)f(x)的定義域上為增函數(shù);
(3)證明:由(2)知當(dāng)a=2時,f(x)在(1,2)上是增函數(shù),
∴f(x)>f(1)=0,即(x+1)lnx>2(x-1),
∴$\frac{1}{lnx}$<$\frac{x+1}{2(x-1)}$,①
∵1<x<2,
∴0<2-a<1,$\frac{1}{2-x}>1$,
∴$\frac{1}{ln\frac{1}{2-x}}$<$\frac{\frac{1}{2-x}+1}{2(\frac{1}{2-x}-1)}$=$\frac{3-x}{2(x-1)}$,
即-$\frac{1}{ln(2-x)}$<$\frac{3-x}{2(x-1)}$,②
①+②得:$\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$<$\frac{x+1}{2(x-1)}$+$\frac{3-x}{2(x-1)}$=$\frac{2}{x-1}$
∴原式成立.

點(diǎn)評 本題考查運(yùn)用導(dǎo)數(shù)思想求切線的斜率、單調(diào)區(qū)間和極值,同時考查構(gòu)造函數(shù)求導(dǎo)數(shù),判斷單調(diào)性,運(yùn)用單調(diào)性證明不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若等邊三角形ABC任一底邊上的高為$\sqrt{3}$,平面上任意一點(diǎn)P滿足$\overrightarrow{CP}$=$\frac{1}{3}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{CA}$,則$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(文)已知 F1、F2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),若雙曲線上存在點(diǎn)A,使∠F1AF2=90°,且|AF1|=3|AF2|,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x-alnx(a∈R).
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)若對于x∈(1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積與其外接球的體積之比為( 。
A.1:3πB.$\sqrt{3}:π$C.$1:3\sqrt{3}π$D.$1:\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)P為拋物線C:y2=4x上一點(diǎn),記P到此拋物線準(zhǔn)線l的距離為d1,點(diǎn)P到圓x2+y2+4x+8y+16=0上的點(diǎn)的距為d2,則d1+d2的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別為雙曲線x2-$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn),若點(diǎn)P在雙曲線上,且∠F1PF2=90°,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=( 。
A.$\sqrt{10}$B.2$\sqrt{10}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( 。
A.B.C.$\frac{8\sqrt{2}π}{3}$D.$\frac{4\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=logcos1(sinx)的單調(diào)遞增區(qū)間是[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z).

查看答案和解析>>

同步練習(xí)冊答案