分析 由題意可得t=sinx∈[-1,$\frac{1}{2}$],換元可得y=-3t2+5t-1,由二次函數(shù)區(qū)間的最值可得.
解答 解:∵x∈[-$\frac{2π}{3}$,$\frac{π}{6}$],∴t=sinx∈[-1,$\frac{1}{2}$],
對(duì)已知函數(shù)f(x)=3cos2x+5sinx-4換元可得:
y=3(1-t2)+5t-4=-3t2+5t-1,
由二次函數(shù)可知函數(shù)y在t∈[-1,$\frac{1}{2}$]單調(diào)遞增,
∴當(dāng)t=-1時(shí),函數(shù)取最小值-9,
當(dāng)t=$\frac{1}{2}$時(shí),函數(shù)取最大值$\frac{3}{4}$,
∴原函數(shù)的值域?yàn)閇-9,$\frac{3}{4}$].
點(diǎn)評(píng) 本題考查三角函數(shù)的最值,換元轉(zhuǎn)化為二次函數(shù)區(qū)間的最值是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com