14.已知函數(shù)y=loga(x+3)-$\frac{8}{9}$(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,則A的坐標(biāo)是$(-2,-\frac{8}{9})$.

分析 由loga1=0,知x+3=1,求出x,y,由此能求出點(diǎn)P的坐標(biāo).

解答 解:∵loga1=0,
∴x+3=1,即x=-2時(shí),y=-$\frac{8}{9}$,
∴點(diǎn)P的坐標(biāo)是P$(-2,-\frac{8}{9})$.
故答案為:$(-2,-\frac{8}{9})$

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì)和特殊點(diǎn),解題時(shí)要認(rèn)真審題,仔細(xì)解答,避免出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=4x-2x+1-a沒(méi)有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.a<-1B.a≤0C.a≥0D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定義在R上的偶函數(shù)f(x)滿(mǎn)足:對(duì)任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.則f(3),f(-1),f(2)的大小關(guān)系是f(3)<f(2)<f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,線段AB長(zhǎng)度為2,點(diǎn)A,B分別在x軸的正半軸和y軸的正半軸上滑動(dòng),以線段AB為一邊,在第一象限內(nèi)作等邊三角形,O為坐標(biāo)原點(diǎn),則$\overrightarrow{OC}$•$\overrightarrow{OB}$的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知全集U=R,集合A={x|x<3或x>4},B={x|4<x<5}.
(1)求(∁UA)∪B;
(2)已知C={x|x≥a},若C∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.角α 終邊經(jīng)過(guò)點(diǎn)(-sin20°,cos20°),則角α的最小正角是( 。
A.110°?B.160°?C.290°?D.340°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}中,a1=3,a2=5,且數(shù)列{an}的前n 項(xiàng)和S n滿(mǎn)足Sn+Sn-2=2Sn-1+2(n≥3)
(1)求證:{an}為等差數(shù)列;
(2)記數(shù)列bn=$\frac{{a}_{n}}{{3}^{n}}$,試歸納數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,a2n=a2n-1+(-2)n-1,a2n+1=a2n+4n,n∈N*
(1)求a2,a3
(2)求{an}的通項(xiàng)公式;
(3)記bn=a2n+2-a2n,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<$\frac{7}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.命題p:已知0<a<1,b>1,若x∈(0,1),則xa>xb;命題q:若x2-ax+1>0恒成立,則-2≤a≤2;則下列結(jié)論:
①命題“p∧q”是真命題;            ②命題“p∧(¬q)”是真命題;
③命題“(¬p)∨q”是真命題;         ④命題“(¬p)∨(¬q)”是真命題.
其中正確的是( 。
A.②③B.②④C.①②④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案