13.已知球的半徑為4,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓,若兩圓的公共弦長(zhǎng)為4,則兩圓的圓心距等于( 。
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

分析 求解本題,可以從三個(gè)圓心上找關(guān)系,構(gòu)建矩形利用對(duì)角線相等即可求解出答案.

解答 解:設(shè)兩圓的圓心分別為O1、O2,球心為O,公共弦為AB,其中點(diǎn)為E,則OO1EO2為矩形,于是對(duì)角線O1O2=OE,
而OE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,∴O1O2=2$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查球的有關(guān)概念,兩平面垂直的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,則a與b的夾角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若命題p:α是第一象限角;命題q:α是銳角,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)x>0,y>0且x+4y=40,則lgx+lgy的最大值是( 。
A.40B.10C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,1)B.[1,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為2的直線l,使得當(dāng)直線l與橢圓C有兩個(gè)不同交點(diǎn)M,N時(shí),能在直線$y=\frac{5}{3}$上找到一點(diǎn)P,在橢圓C上找到一點(diǎn)Q,滿足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知扇形的半徑是8cm,圓心角是45°的扇形所對(duì)的弧長(zhǎng)是2πcm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=2cos(2x+$\frac{π}{3}$),函數(shù)g(x)的圖象由函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位而得到,則當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),g(x)的單調(diào)遞增區(qū)間是[-$\frac{5π}{12}$,$\frac{π}{12}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=3x2+ax+b,且f(x-1)是偶函數(shù),則f(-$\frac{3}{2}$),f(-1),f($\frac{3}{2}$)的大小關(guān)系是f(-1)<f(-$\frac{3}{2}$)<f($\frac{3}{2}$)(請(qǐng)用“<”表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案