已知數(shù)列{an}的前n項(xiàng)和為Sn,a=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用恒等式an+1=2Sn+1構(gòu)造出an=2Sn-1+1兩者作差得出an+1=3an,數(shù)列的{bn}的求解根據(jù)題意列出方程求d即可;
(2)中數(shù)列求和,利用錯(cuò)位相減法,即可得到結(jié)論
解答: 解:(1)∵a1=1,an+1=2Sn+1(n∈N*),
∴an=2Sn-1+1(n∈N*,n>1),
∴an+1-an=2(Sn-Sn-1),
∴an+1-an=2an,
∴an+1=3an(n∈N*,n>1)
而a2=2a1+1=3=3a1,∴an+1=3an(n∈N*
∴數(shù)列{an}是以1為首項(xiàng),3為公比的等比數(shù)列,
∴an=3n-1(n∈N*
∴a1=1,a2=3,a3=9,
在等差數(shù)列{bn}中,
∵b1+b2+b3=15,∴b2=5.
又因a1+b1、a2+b2、a3+b3成等比數(shù)列,設(shè)等差數(shù)列{bn}的公差為d,
∴(1+5-d)(9+5+d)=64
解得d=-10,或d=2,
∵bn>0(n∈N*),
∴舍去d=-10,取d=2,
∴b1=3,
∴bn=2n+1(n∈N*),
(2)由(1)知Tn=3×1+5×3+7×32++(2n-1)3n-2+(2n+1)3n-1
3Tn=3×3+5×32+7×33++(2n-1)3n-1+(2n+1)3n
①-②得-2Tn=3×1+2×3+2×32+2×33++2×3n-1-(2n+1)3n,
=3+2(3+32+33++3n-1)-(2n+1)3n
=3+2×
3-3n
1-3
-(2n+1)3n=3n-(2n+1)3n=-2n•3n,
∴Tn=n•3n
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的通項(xiàng)與求和,考查錯(cuò)位相減法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷并證明下列函數(shù)的奇偶性.
(Ⅰ)f(x)=|x|+
1
x2
;  
(Ⅱ)f(x)=x2+2x;  
(Ⅲ)f(x)=x+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)x滿足方程2t3-t2x+2t(x+1)-x-x2=0,
a
=(1,x),
b
=(-3,2),
c
=
a
+t
b
,則
a
c
取最小值m時(shí),m和x的值分別為(  )
A、m=
23
32
,x=
3
16
B、m=
23
32
,x=
3
8
C、m=-
7
2
,x=
3
4
D、m=-
7
2
,x=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,M是△ABC內(nèi)一點(diǎn),且滿足條件
AM
+2
BM
+3
CM
=0
,延長(zhǎng)CM交AB于N,令
CM
=a
,試用a表示
CN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了加強(qiáng)環(huán)保建設(shè),提高社會(huì)效益和經(jīng)濟(jì)效益,鄭州市計(jì)劃用若干年更換l0 000輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動(dòng)力型車.今年初投入了電力型公交車l28輛,混合動(dòng)力型公交車400輛,計(jì)劃以后電力型車每年的投入量比上一年增加50%,混合動(dòng)力型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計(jì)劃用7年的時(shí)間完成全部更換,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠家生產(chǎn)一種精密儀器,已知該工廠每日生產(chǎn)的產(chǎn)品最多不超過30件,且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)的產(chǎn)品件數(shù)x(x∈N*)之間的關(guān)系為p(x)=
m-x2
3 000
,每生產(chǎn)一件正品盈利2 000元,每生產(chǎn)一件次品虧損1 000元.已知若每日生產(chǎn)10件,則生產(chǎn)的正品只有7件.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(1)求日利潤(rùn)y(元)與日產(chǎn)量x(件)之間的函數(shù)關(guān)系式;
(2)求該工廠的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x+1)5(2x-1)3=a8x8+a7x7+…+a1x+a0,則a7的值為( 。
A、-2B、28C、43D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)死亡生物組織內(nèi)的碳14的含量不足死亡前的千分之一時(shí),用一般的放射性探測(cè)器就測(cè)不到碳14了,“半衰期”為5730年.
(1)死亡生物組織內(nèi)的碳14經(jīng)過九個(gè)“半衰期”后,用一般的放射性探測(cè)器能測(cè)到碳14嗎?
(2)大約經(jīng)過多少萬年后,用一般放射性探測(cè)器就測(cè)不到碳14了(精確到萬年)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義f (n)為n2+1的各位數(shù)字之和(n∈N*),如132+1=170,則f (13)=1+7+0=8.記f1 (n)=f (n),f2 (n)=f[f1 (n)],…,fk+1(n)=f[fk (n)](k∈N*),則f2012 (9)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案