(本小題滿分12分)
已知等比數(shù)列{an}的各項均為正數(shù),且 2a1 + 3a2 = 1, = 9a2a6.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) bn= log3a1 + log3a2 + … + log3an,求的前n項和Tn ;
(Ⅲ)在(Ⅱ)的條件下,求使 ≥ (7 − 2n)Tn恒成立的實數(shù) k 的取值范圍.
(Ⅰ).(Ⅱ)前 n 項和為 − .(Ⅲ)
【解析】
試題分析:(1)根據(jù)2a1 + 3a2 = 1, = 9a2a6.可建立關(guān)于a1和q的方程求出a1和q的值,從而得到{an}的通項公式.
(2)再(1)的基礎(chǔ)上根據(jù)對數(shù)的運算性質(zhì)可得,因而可得 = −2,顯然采用疊加求和的方法求和.
(3)可令,采用作差法求的最大值,從而求出k的范圍.
(Ⅰ)設(shè)數(shù)列的公比為(q > 0 ),
由 得,.
故數(shù)列的通項公式為.
(Ⅱ )bn = log3a1 + log3a2 + … + log3an = −
故 = −2
Tn = + + + … +
= −2 = −
所以數(shù)列 的前 n 項和為 − .
(Ⅲ )化簡得對任意恒成立
設(shè),則
當(dāng)為單調(diào)遞減數(shù)列,
為單調(diào)遞增數(shù)列,
所以,n=5時,取得最大值為.
所以, 要使對任意恒成立,
考點:考查了等比數(shù)列的通項、數(shù)列求和、不等式恒成立等知識.
點評:掌握等差等比數(shù)列的通項及性質(zhì)以及常用數(shù)列求和的方法是求解此類問題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com