2.下列命題中,真命題是( 。
A.“?x∈R,x2≥x”的否定為“?x∉R,x2≥x”
B.命題“若x=1,則x2=1”逆命題
C.“若$\sqrt{3}x(x≠0)$是有理數(shù),則x為無(wú)理數(shù)”的逆否命題
D.“x<-1”是“x2-1>0”的必要不充分條件條件

分析 A.利用命題的否定定義即可判斷出;
B.原命題的逆命題為“若x2=1,則x=1”,進(jìn)而判斷出真假;
C.命題是真命題,其逆否命題與原命題是等價(jià)命題;
D.由x2-1>0,解得x>1,或x<-1,即可判斷出真假.

解答 解:A.“?x∈R,x2≥x”的否定為“?x∈R,x2<x”,因此不正確
B.命題“若x=1,則x2=1”逆命題為“若x2=1,則x=1”是假命題;
C.命題“若$\sqrt{3}x(x≠0)$是有理數(shù),則x為無(wú)理數(shù)”,是真命題,因此其逆否命題也是真命題;
D.由x2-1>0,解得x>1,或x<-1,因此“x<-1”是“x2-1>0”的充分不必要條件,不正確.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、不等式與方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出的S的值是(  )
A.150B.300C.400D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ax2+2ax+1.x∈[-3,2]的最大值為4.求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|2a<x<a2+1}.
(Ⅰ)當(dāng)a=-2時(shí),求A∪B;
(Ⅱ)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=-3x+7,g(x)=lg(ax2-4x+a),若?x1∈R,?x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線$l:y=\sqrt{3}x+2$與圓O:x2+y2=4相交于A,B兩點(diǎn),則|AB|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)、g(x)滿足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{10}{3}$,若cn=$\frac{f(n)}{g(n)}$,則數(shù)列{ncn}的前n項(xiàng)和Sn=$\frac{3+(2n-1)•{3}^{n+1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐O-ABC中OA、OB、OC兩兩垂直,OC=3,OA=x,OB=y,若x+y=4,則三棱錐體積的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中一定是指數(shù)函數(shù)的是(  )
A.y=5x+1B.y=x4C.y=3xD.y=-2•3x

查看答案和解析>>

同步練習(xí)冊(cè)答案