精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= ,若f(x)的兩個零點分別為x1 , x2 , 則|x1﹣x2|=(
A.
B.1+
C.2
D. +ln2

【答案】C
【解析】解:當x>0時,f(x)=log4(x+1)+x﹣1,

由f(x)=0,可得x﹣1=

當x≤0時,f(x)=x﹣ +3,

由f(x)=0,可得

作出函數圖象如圖:

∵函數y= 與y= 互為反函數,則其圖象關于直線y=x對稱,

分別是把y= 與y= 向左平移1個單位得到的,

∴兩函數圖象關于直線y=x+1對稱,

又直線y=x﹣1與y=x+3也關于直線y=x+1對稱,

不妨設y=x+3(x≤0)與y= 的交點的橫坐標為x1,y=x﹣1(x>0)與y= 的交點的橫坐標為x2,

則|x1﹣x2|=

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點F引圓x2+y2=a2的切線,切點為T,延長FT交雙曲線右支于P點,若M為線段FP的中點,O為坐標原點,則|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 , 滿足| |=3,| |=2| |,若| |≥3恒成立,則實數λ的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)為R上的可導函數,且對x∈R,均有f(x)>f′(x),則有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點M,使得二面角M﹣AC﹣D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)過點( ,1),且焦距為2
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)(k>﹣2)與橢圓C相交于不同的兩點A、B,線段AB的中點M到直線2x+y+t=0的距離為 ,求t(t>2)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2lnx﹣ax2+3,若存在實數m、n∈[1,5]滿足n﹣m≥2時,f(m)=f(n)成立,則實數a的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點,E為PD的中點.
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圖一是四面體ABCD的三視圖,E是AB的中點,F(xiàn)是CD的中點.
(1)求四面體ABCD的體積;
(2)求EF與平面ABC所成的角.

查看答案和解析>>

同步練習冊答案