【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有( )
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)
【答案】D
【解析】解:令g(x)= ,則g′(x)= ,
因?yàn)閒(x)>f'(x),所以g′(x)<0,所以函數(shù)g(x)為R上的減函數(shù),
所以g(﹣2016)>g(0)>g(2016)
即 > > ,
所以f(0)< =e2016f(﹣2016),e2016f(0)>f(2016),
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本求導(dǎo)法則的相關(guān)知識(shí),掌握若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A是雙曲線 的右頂點(diǎn),F(xiàn)(c,0)是右焦點(diǎn),若拋物線 的準(zhǔn)線l上存在一點(diǎn)P,使∠APF=30°,則雙曲線的離心率的范圍是( )
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車的使用年數(shù)x與所支出的維修費(fèi)用y的統(tǒng)計(jì)數(shù)據(jù)如表:
使用年數(shù)x(單位:年) | 1 | 2 | 3 | 4 | 5 |
維修總費(fèi)用y(單位:萬(wàn)元) | 0.5 | 1.2 | 2.2 | 3.3 | 4.5 |
根據(jù)上表可得y關(guān)于x的線性回歸方程 = x﹣0.69,若該汽車維修總費(fèi)用超過(guò)10萬(wàn)元就不再維修,直接報(bào)廢,據(jù)此模型預(yù)測(cè)該汽車最多可使用( )
A.8年
B.9年
C.10年
D.11年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為 +y2=1,圓C:(x﹣1)2+y2=r2 .
(Ⅰ)求橢圓上動(dòng)點(diǎn)P與圓心C距離的最小值;
(Ⅱ)如圖,直線l與橢圓相交于A、B兩點(diǎn),且與圓C相切于點(diǎn)M,若滿足M為線段AB中點(diǎn)的直線l有4條,求半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1所有的棱長(zhǎng)均為2,A1B= ,A1B⊥AC.
(Ⅰ)求證:A1C1⊥B1C;
(Ⅱ)求直線AC和平面ABB1A1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計(jì)顯示,參與網(wǎng)上購(gòu)票的1000位購(gòu)票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個(gè)年齡段的網(wǎng)上購(gòu)票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵(lì)大家網(wǎng)上購(gòu)票,該平臺(tái)常采用購(gòu)票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若f(x)的兩個(gè)零點(diǎn)分別為x1 , x2 , 則|x1﹣x2|=( )
A.
B.1+
C.2
D. +ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)E(﹣2,0),點(diǎn)P時(shí)圓F:(x﹣2)2+y2=36上任意一點(diǎn),線段EP的垂直平分線交FP于點(diǎn)M,點(diǎn)M的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)F的直線交曲線C于不同的A、B兩點(diǎn),交y軸于點(diǎn)N,已知 =m , =n ,求m+n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com