已知復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i(m∈R),試求m為何值時(shí),
(1)z為實(shí)數(shù)?
(2)z所對應(yīng)的點(diǎn)落在第三象限?
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由于z為實(shí)數(shù),則虛部為0,解出即可;
(2)由于z所對應(yīng)的點(diǎn)落在第三象限,利用復(fù)數(shù)的幾何意義可得
m2+5m+6<0
m2-2m-15<0
,解出即可.
解答: 解:(1)z為實(shí)數(shù),則虛部為0,即m2-2m-15=0,解得m=-3或m=5.
(2)∵z所對應(yīng)的點(diǎn)落在第三象限,
m2+5m+6<0
m2-2m-15<0
,
解得:
-3<m<-2
-3<m<5
,
故m∈(-3,-2).
點(diǎn)評:本題考查了復(fù)數(shù)為實(shí)數(shù)的充要條件、復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i2014
1-2i
的虛部是( 。
A、
2
5
B、-
2
5
C、
1
5
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=1-i,z2=1+i,則
z1z2
i
 等于( 。
A、2iB、-2i
C、2+iD、-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在山腳A測得山頂P的仰角為30°,沿傾斜角為15°的斜坡向上走a米到B,在B處測得山頂P的仰角為60°,求山高h(yuǎn)=( 。
A、
2
2
a
B、
a
2
C、
3
2
a
D、a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
2
x
-3lnax,其中a≠0.
(1)討論f(x)的單調(diào)性;
(2)假定函數(shù)f(x)在點(diǎn)P處的切線為l,如果l與函數(shù)f(x)的圖象除P外再無其它公共點(diǎn),則稱l是f(x)的一條“單純切線”,我們稱P為“單純切點(diǎn)”.設(shè)f(x)的“單純切點(diǎn)”P為(x0,f(x0)),當(dāng)a>0時(shí),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲組有6人,乙組有4人,其中組長各1人.
(Ⅰ)這10人站成一排照相,根據(jù)下列要求,各有多少種排法?
①同組人員相鄰;
②乙組人員不相鄰.
(Ⅱ)現(xiàn)選派5人去參加比賽,根據(jù)下列要求,各有多少種選派方法?
①甲組3人,乙組2人;
②組長中至少有1人參加.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校隨機(jī)抽取20個(gè)班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖和頻率分布直方圖如圖.

(1)求頻率分布直方圖中m的值;
(2)若要從有網(wǎng)上購物經(jīng)歷的人數(shù)在區(qū)間[30,40]內(nèi)的班級中任取兩個(gè)班,求其中至少有一個(gè)班有網(wǎng)上購物經(jīng)歷的人數(shù)大于36的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-ax-bxcosx(a∈R,b∈R).
(1)若b=0,討論函數(shù)f(x)在區(qū)(0,π)上的單調(diào)性;
(2)若a=2b且a≥
2
3
,對任意的x>0,試比較f(x)與0的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點(diǎn).
(Ⅰ)若P是第一象限內(nèi)該橢圓上的一點(diǎn),且
PF1
PF2
=-
5
4
,求點(diǎn)P的坐標(biāo);
(Ⅱ)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且點(diǎn)O在以AB為直徑的圓的外部(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案