橢圓
x2
9
+
y2
5
=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為2π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為
3
3
分析:先根據(jù)橢圓方程求得a和c,及左右焦點(diǎn)的坐標(biāo),進(jìn)而根據(jù)三角形內(nèi)切圓面積求得內(nèi)切圓半徑,進(jìn)而根據(jù)△ABF2的面積=△AF1F2的面積+△BF1F2的面積求得△ABF2的面積=3|y2-y1|進(jìn)而根據(jù)內(nèi)切圓半徑和三角形周長求得其面積,建立等式求得|y2-y1|的值.
解答:解:橢圓:
x2
9
+
y2
5
=1
,a=3,b=
5
,∴c=2,左、右焦點(diǎn)F1(-2,0)、F2(2,0),△ABF2的內(nèi)切圓周長為2π,則內(nèi)切圓的半徑為r=1,
而△ABF2的面積=△AF1F2的面積+△BF1F2的面積=
1
2
×|y1|×|F1F2|+
1
2
×|y2|×|F1F2|=
1
2
×(|y1|+|y2|)×|F1F2|=2|y2-y1|(A、B在x軸的上下兩側(cè))
又△ABF2的面積═
1
2
×|r(|AB|+|BF2|+|F2A|=
1
2
×1×(2a+2a)=2a=6.
所以 2|y2-y1|=6,|y2-y1|=3.
故答案為3.
點(diǎn)評:本題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質(zhì),三角形內(nèi)切圓性質(zhì),本題的關(guān)鍵是求出△ABF2的面積,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
5
=1
上一點(diǎn)P到兩焦點(diǎn)的距離之比為1:2,則點(diǎn)P到較遠(yuǎn)的準(zhǔn)線的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9 
+
y2
5 
=1
的焦點(diǎn)坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求經(jīng)過點(diǎn)(
5
2
,-
3
2
)
,且與橢圓
x2
9
+
y2
5
=1
有共同焦點(diǎn)的橢圓方程;
(2)已知橢圓以坐標(biāo)軸為對稱軸,且長軸長是短軸長的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)N(2,0),動(dòng)點(diǎn)A,B分別在圖中拋物線y2=8x及橢圓
x2
9
+
y2
5
=1
 的實(shí)線部分上運(yùn)動(dòng),且AB∥x軸,則△NAB的周長L的取值范圍是
(
26
5
,6)
(
26
5
,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
5
=1
的離心率為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案