分析 (Ⅰ)求出原函數(shù)的導(dǎo)函數(shù)f′(x)=lnx+1,可得f′(e)=2,又f(e)=e,利用直線方程的點斜式可得曲線f(x)在點(e,f(e))處的切線方程;
(Ⅱ)把f(x)-$\frac{1}{2}$≤$\frac{3}{2}{x}^{2}$+ax在(0,+∞)上恒成立轉(zhuǎn)化為2a≥$\frac{2xlnx-3{x}^{2}-1}{x}$在(0,+∞)上恒成立,令g(x)=$\frac{2xlnx-3{x}^{2}-1}{x}$,利用導(dǎo)數(shù)求其最大值得答案.
解答 解:(Ⅰ)依題意,f′(x)=lnx+1,故f′(e)=2,而f(e)=e,
∴曲線y=f(x)在點(e,f(e))處的切線方程為y-e=2(x-e),
即y=2x-e;
(Ⅱ)關(guān)于x的不等式f(x)-$\frac{1}{2}$≤$\frac{3}{2}{x}^{2}$+ax在(0,+∞)上恒成立,
即$xlnx-\frac{1}{2}≤\frac{3}{2}{x}^{2}+ax$在(0,+∞)上恒成立,
也就是2a≥$\frac{2xlnx-3{x}^{2}-1}{x}$在(0,+∞)上恒成立,
令g(x)=$\frac{2xlnx-3{x}^{2}-1}{x}$,則g′(x)=$\frac{-(3x+1)(x-1)}{{x}^{2}}$.
當(dāng)x∈(0,1)時,g′(x)>0,g(x)單調(diào)遞增,
當(dāng)x∈(1,+∞)時,g′(x)<0,g(x)單調(diào)遞減.
∴g(x)max=g(1)=-4,
故2a≥-4,可得a≥-2.
故實數(shù)a的取值范圍為[-2,+∞).
點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查了利用分離參數(shù)法求解恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | $\frac{19}{2}$ | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{ln2}{4}$,-$\frac{ln2}{8}$] | B. | (-$\frac{ln2}{8}$,-$\frac{ln5}{30}$] | C. | (-$\frac{ln2}{8}$,-$\frac{ln5}{25}$] | D. | (-$\frac{ln3}{9}$,-$\frac{ln2}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\frac{7}{5}$)<f($\frac{4}{3}$)<f(-$\frac{1}{2}$) | B. | f($\frac{4}{3}$)<f(-$\frac{1}{2}$)<f($\frac{7}{5}$) | C. | f($\frac{4}{3}$)<f($\frac{7}{5}$)<f(-$\frac{1}{2}$) | D. | f(-$\frac{1}{2}$)<f($\frac{4}{3}$)<f($\frac{7}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com