【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直, 平面,且.
(Ⅰ)求證: 平面;
(Ⅱ)若,求幾何體的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三(1)班全體女生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:
(1)求高三(1)班全體女生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的女生人數(shù),并計算頻率分布直方圖中[80,90)之間的矩形的高;
(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析女生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側(cè)棱底面,且, 為中點,點在上,且平面,連接, .
(Ⅰ)證明: 平面;
(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(Ⅲ)已知, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)求函數(shù)在上的單調(diào)區(qū)間,并給以證明;
(2)設(shè)關(guān)于的方程的兩根為,試問是否存在實數(shù),使得不等式對任意的及恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)
(1)函數(shù)過定點,求的值;
(2)當(dāng)時,求函數(shù)的最小值;
(3)是否存在實數(shù),使得(2)中關(guān)于的函數(shù)的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙同學(xué)參加學(xué)!耙徽镜降住标J關(guān)活動,活動規(guī)則:①依次闖關(guān)過程中,若闖關(guān)成功則繼續(xù)答題;若沒通關(guān)則被淘汰;②每人最多闖3關(guān);③闖第一關(guān)得10分,闖第二關(guān)得20分,闖第三關(guān)得30分,一關(guān)都沒過則沒有得分.已知甲每次闖關(guān)成功的概率為,乙每次闖關(guān)成功的概率為.
(Ⅰ)設(shè)乙的得分總數(shù)為,求得分布列和數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多30分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在兩個正實數(shù),使得等式成立(其中為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,且方程 無實數(shù)根,下列命題:
(1)方程 一定有實數(shù)根;
(2)若 ,則不等式 對一切實數(shù) 都成立;
(3)若 ,則必存在實數(shù) ,使 ;
(4)若 ,則不等式 對一切實數(shù) 都成立.
其中,正確命題的序號是________________.(把你認(rèn)為正確的命題的所有序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com