【題目】某校高三(1)班全體女生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題

(1)求高三(1)班全體女生的人數(shù);

(2)求分?jǐn)?shù)在[80,90)之間的女生人數(shù),并計(jì)算頻率分布直方圖中[80,90)之間的矩形的高;

(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析女生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率

【答案】(125

20.016

30.6

【解析】試題分析:(1)解:設(shè)全班女生人數(shù)為,

2) 根據(jù)題意,由于分?jǐn)?shù)在之間的女生人數(shù)25-21=4人,根據(jù)比例關(guān)系得0.016

3)設(shè)六個(gè)人編號(hào)為1,2,3,4,5,6.所有可能根據(jù)列舉法得(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4, 5)(4,6)(5,615個(gè)基本事件,其中符合的是(1,5)(1,6)(2,5)(2,6)(3,5)(3,6)(4,5)(4,6)(5,69個(gè)基本事件,

所以所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。

⑴記所抽取的3道題中,甲答對(duì)的題數(shù)為X,則X的分布列為____________;

⑵記乙能答對(duì)的題數(shù)為Y,則Y的期望為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中底面ABCD中,ABADAD2,AB3,BCBE7DCE是邊長(zhǎng)為6的正三角形

(1)求證平面DEC⊥平面BDE;

(2)求點(diǎn)A到平面BDE的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求經(jīng)過兩直線2x-3y-3=0和xy+2=0的交點(diǎn)且與直線3xy-1=0平行的直線l的方程;

(2)求經(jīng)過兩直線l1x-2y+4=0和l2xy-2=0的交點(diǎn)P,且與直線l3:3x-4y+5=0垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 上的點(diǎn), 平面;

(Ⅰ)求證: 平面;

(Ⅱ)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(1)根據(jù)表中數(shù)據(jù)判斷能否有的把握認(rèn)為“古文迷”與性別有關(guān)?

(2)先從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行理科學(xué)習(xí)時(shí)間的調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(3)現(xiàn)從(2)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行體育鍛煉時(shí)間的調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人同時(shí)從地趕住地,甲先騎自行車到兩地的中點(diǎn)再改為跑步;乙先跑步到兩地的中點(diǎn)再改為騎自行車,最后兩人同時(shí)到達(dá)地.已知甲騎自行車比乙騎自行車的速度快,且兩人騎車的速度均大于跑步的速度.現(xiàn)將兩人離開地的距離與所用時(shí)間的函數(shù)關(guān)系用圖象表示如下:

則上述四個(gè)函數(shù)圖象中,甲、乙兩人運(yùn)行的函數(shù)關(guān)系的圖象應(yīng)該分別是( )

A. 圖①、圖② B. 圖①、圖④ C. 圖③、圖② D. 圖③、圖④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正三角形的邊長(zhǎng)均為2,它們所在平面互相垂直, 平面,且.

(Ⅰ)求證: 平面

(Ⅱ)若,求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案