7.已知M是拋物線x2=16y上任意一點,A(0,4),B(-1,1),則|MA|+|MB|的最小值為( 。
A.$\sqrt{10}$B.3C.8D.5

分析 利用拋物線的定義可知|MA|+|MB|等于M到準(zhǔn)線與M到B的距離之和,故B到準(zhǔn)線的距離即為|MA|+|MB|的最小值.

解答 解:拋物線的交點為A(0,4),準(zhǔn)線方程為y=-4,
過M向準(zhǔn)線作垂線,垂足為N,則MA=MN,
∴|MA|+|MB|=|MN|+|MB|,
∴當(dāng)M,N,B三點共線時,|MN|+|MB|取得最小值5,
故選D.

點評 本題考查了拋物線的定義和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值與最小值的差為(  )
A.3B.4C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=x-3y的取值范圍為( 。
A.[-12,1]B.[-12,0]C.[-2,4]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=90°,四邊形ABCD是平行四邊形,且PA=AD=2,AB=1,E是線段PD的中點.
( 1 ) 求證:AE⊥PC;
(2)是否存在正實數(shù)λ,滿足$\overrightarrow{PM}=λ\overrightarrow{MC}$,使得二面角M-BD-C的大小為600?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知三條直線為l1:4x+y=4;l2:mx+y=0,l3:x-my=2,若此三條直線不能構(gòu)成三角形,則實數(shù)m=4、或-$\frac{1}{4}$、或-1、或1或$\frac{-1±\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.化簡:
(1)sin(-α)cos(-α-π)tan(2π+α);
(2)$\frac{sin(180°+α)cos(-α)}{tan(-α)}$;
(3)$\frac{cos(α+π)sin(-α)}{cos(-3π-α)sin(-α-4π)}$;
(4)sin2(-α)+tan(2π+α)cos2(π+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(1,1)$,$\overrightarrow c=(5,2)$,$\overrightarrow m=λ\overrightarrow b+\overrightarrow c$(λ為常數(shù)).
(1)求$\overrightarrow a+\overrightarrow b$;
(2)若$\overrightarrow a$與$\overrightarrow m$平行,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)等差數(shù)列{an}的前n項和為Sn,$\overrightarrow{a}$=(a1,1),$\overrightarrow$=(1,a10),若$\overrightarrow{a}$•$\overrightarrow$=20,且S11=121,bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,則數(shù)列{bn}的前40項和為( 。
A.$\frac{72.8}{81}$B.$\frac{182}{81}$C.$\frac{364}{81}$D.$\frac{91}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱臺ABCD-A1B1C1D1中,底面ABCD為平行四邊形,∠BAD=120°,M為CD上的點.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求證:AM⊥A1B;
(2)若M為CD的中點,N為棱DD1上的點,且MN與平面A1BD所成角的正弦值為$\frac{1}{{\sqrt{35}}}$,試求DN的長.

查看答案和解析>>

同步練習(xí)冊答案